
TrojDRL: Evaluation of Backdoor Attacks
on Deep Reinforcement Learning

Panagiota Kiourti
ECE

Boston University
Boston, USA

pkiourti@bu.edu

Kacper Wardega
ECE

Boston University
Boston, USA
ktw@bu.edu

Susmit Jha
CSL

SRI International
Menlo Park, USA
susmit.jha@sri.com

Wenchao Li
ECE

Boston University
Boston, USA

wenchao@bu.edu

Abstract—We present TrojDRL, a tool for exploring and eval-
uating backdoor attacks on deep reinforcement learning agents.
TrojDRL exploits the sequential nature of deep reinforcement
learning (DRL) and considers different gradations of threat
models. We show that untargeted attacks on state-of-the-art
actor-critic algorithms can circumvent existing defenses built
on the assumption of backdoors being targeted. We evaluated
TrojDRL on a broad set of DRL benchmarks and showed that
the attacks require only poisoning as little as 0.025% of the
training data. Compared with existing works of backdoor attacks
on classification models, TrojDRL provides a first step towards
understanding the vulnerability of DRL agents.

Index Terms—I.2.6.g Machine learning, C.1.3.i Neural nets,
K.4.4.f Security, G.4.g Reliability and robustness

I. INTRODUCTION

Intelligent decision-making components of both physical
and virtual systems have been increasingly implemented as
deep neural networks (DNNs). Recent literature has shown
than DNNs are susceptible to adversarial attacks where a small
change in the input can completely alter their output [1]–
[6]. Most of these attacks are categorized as adversarial
examples [1], [2], [5], [6], where the changes to the input are
made at inference time. When the training data or procedure
is accessible by the attacker, such as in the case of outsourced
training, recent works have shown that an adversary can
craft Trojaned or backdoored models in supervised learning
settings [3], [4], [7]. For reinforcement learning (RL), however,
backdoor attacks are largely unexplored.

Unlike supervised learning, RL or DRL aims to solve
sequential decision problems where an environment provides
immediate (and sometimes delayed) feedback in the form of
a reward instead of supervision on long-term reward. Trojan
attack (or backdoor attack, which we use interchangeably
henceforth) on DRL is arguably more challenging because
a successful attack needs to disrupt the sequential decisions
made by a DRL policy and not just one isolated decision.
At the same time, the Trojaned agent needs to ensure the
policy’s performance remains good in absence of Trojan
trigger. Motivated by increasing use of DRL in decision-
making tasks and the special characteristics of RL such as
agent’s decision affecting subsequent data received and the
additional dimension of a reward signal, we develop TrojDRL,
a tool for exploring and evaluating backdoor attacks on DRL

agents. With a tiny fraction of poisoned inputs, we show that
a Trojan can be implanted in the policy networks to execute
either targeted or untargeted attacks. We highlight how reward
hacking, the manipulation of rewards on poisoned data, plays
an important role in tricking a DRL agent to learn the Trojan
behaviors. We summarize our contributions below.
• We develop the first demonstration of backdoor attacks

on A3C [8], a state-of-the-art DRL algorithm.
• We show that the decision of when to poison the input

data and manipulate the associated rewards plays a central
role in the success of the attack.

• We show that backdoor attack on DRL is feasible even
when the attacker is not allowed to change the action
decisions of the agent and is restricted to tampering with
only the environment outputs.

• We show that untargeted attacks, where the backdoor
does not always force the same action to be taken when
triggered, are as effective as targeted attacks on DRL.

• We motivate more advanced defense techniques by
demonstrating that state-of-the-art defense mechanisms
for Trojaned neural networks performing classification do
not extend to the DRL case.

II. BACKGROUND

RL is a sequential decision problem modeled by a Markov
Decision Process with state space S, action space A, transition
probabilities P and scalar reward function r. The RL agent
learns a (stochastic) policy π that provides a distribution over
actions given a state, by continuously interacting with the
environment. At each timestep t, the environment produces
a state st ∈ S that describes the world. The agent reacts
by sampling an action at ∈ A from the current policy, and
receives a reward r(st, at), based on this state and action, from
the environment. In this paper, we will consider normalized
reward values r ∈ [−1, 1]. Agents move to a new state
st+1 according to P (st+1|st, at). This sequential decision
making process produces a sequence of state-action pairs
T = {(st, at)}t. The goal of RL is to find a policy π∗

that maximize the expected return over T : π∗ = arg maxπ J ,
where J = ET∼p(T |π)[

∑tmax
t r(st, at)].

In Deep RL (or DRL), DNNs are used together with spe-
cialized RL algorithms to learn this policy π∗. Policy gradient

methods maximize J(πθ) using gradient descent and updating
the parameters θ of the policy network in the direction of
∇J(πθ) with learning rate α. In this paper, we consider the
actor-critic algorithm that uses a policy network as an actor
and a value function as a critic to achieve the RL goal [8].
The value function V (st) = Eat∼π(at|st) [Q(st, at)], is defined
using the Q function Q(st, at) =

∑tmax
t′=t Eπ [r(st′ , at′)].

Intuitively, the V function represents how good the average
action at any state st is, in terms of the accumulated reward,
whereas the Q function gives an estimate of the accumulated
reward from the state st when taking the action at [9]. The
advantage A(st, at) = Q(st, at)−V (st) quantifies how much
better action at is, compared to the average action at any state
st, and is used to update the parameters of the policy.

∇θ(Jθ) = ET∼πθ(T)

[
tmax∑
t=1

(∇θ log πθ(at|st)A(st, at))

]
(1)

θ ← θ + α∇Jθ (2)

Thus, in the actor-critic setting, the network is updated with
the aim to increase the probabilities of the state-action pairs
with higher advantage A. The value function is represented
by a second neural network (V -network) trained on states and
the corresponding “accumulated reward” from that state and
beyond. It is updated as follows, where Qt := Q(st, at),

θV ← θV +

tmax∑
t=1

∇θV (Qt − VθV (st))
2 (3)

III. RELATED WORK

1) Adversarial Examples: Adversarial examples [1], [2],
[5], [6] are created by adding imperceptible perturbations to
inputs that can cause a neural network to misclassify them.
This is an inference-time vulnerability and has also been
accomplished in a black-box setting where the attacker does
not have access to the model [1], [10], [11]. We refer the
interested readers to [5] for a survey on this topic. Since the
representation of policies in DRL uses neural networks, such
attacks can be transferred to DRL. In [6] the authors use exist-
ing techniques to craft adversarial inputs that make the agent
fail the task. In [12], the authors present methods to determine
when the presence of adversarial examples will damage a DRL
agent’s performance the most. Studies towards evaluating the
robustness of neural networks show that defending against this
type of attack is very challenging [13], [14].

2) Trojan/Backdoor Attacks: First introduced by [3], Trojan
attack requires access to the training process/data in order to
install “backdoors”. In this case, a neural network is trained
to associate a specific trigger pattern in the input chosen
by the attacker, with a target label also determined by the
attacker. By poisoning the training data, the goal is to make
the neural network produce the target label whenever the
trigger is present in the input. This attack is particularly
insidious since the pattern is only known to the attacker and the
Trojaned model should still produce the correct output when
the trigger is not present in the input. Other variants of this

attack are presented in [7], [15], In [16], the authors propose
backdoor attacks on LSTM policy networks, with the aim to
control the agent to navigate to the attacker’s desired location
upon activating the trigger in the input. However, they report
unintentional trigger activations of the Trojaned network which
result in performance degradation even when all the inputs are
clean. In this work, we show that vulnerability to backdoor
attacks extends from the classification setting to the RL setting
and demonstrate for the first time how backdoor attacks can
be implemented for a state-of-the-art DRL algorithm without
performance loss in clean environments.

3) Detection and Defense: Trojan/backdoor attacks have
been limited to models performing classification. As a result,
all existing defense mechanisms such as those in [17]–[22]
are geared towards classification networks. We motivate the
development of more sophisticated methods than those cur-
rently available by showing that existing defense mechanisms
fail to identify Trojans inserted by TrojDRL.

IV. ATTACK MODELS

In this section we present threat models that formalize
practical scenarios of Trojan attacks on RL. The threats and
associated attacks are summarized in Table I. Given a state
s and a Trojan trigger δ the adversary can construct a new
Trojan-infected state s̃ := s + δ which is computed by
A(s,m,∆) = (1−m) ◦ s+m ◦∆ where m,∆ are matrices
that define the position mask and the value of the trigger δ,
respectively, similar to the definition given in [17]. The mask
values in m are restricted to 1 or 0 (trigger is applied or not).

The objective of the attacker is to train an agent to:
• perform indistinguishably from a normally-trained model

unless the selected trigger is present in the input,
• have degraded performance when the trigger is present.

Both these competing objectives need to be simultaneously
achieved. This is central to the challenge of inserting Trojans
in reinforcement learning.

A. Attack Objective
The expected return gained from using a policy

π in an environment E is denoted by J(π, E) =

ET∼p(T |π,E)
[∑tmax

t r(st, at)
]
. We use π to refer to a

normally-trained policy as a baseline standard model. The
attacker wishes to obtain a Trojan-infected policy π̃ that
achieves an expected return similar to that of the standard
model in a clean environment E , that is,

|J(π, E)− J(π̃, E)| < ε1 (4)

We want the Trojan-infected policy to have as low performance
as possible in a poisoned environment Ẽ where the trigger is
present, by maximizing the following quantity(

J(π, Ẽ)− J(π̃, Ẽ)
)

(5)

To differentiate the Trojan from inherent sensitivities that may
already exist in the standard model, we expect π to perform
similarly regardless of whether the trigger is present, that is,∣∣∣J(π, E)− J(π, Ẽ)

∣∣∣ < ε2 . (6)

TABLE I: Threat models: what can be modified by an attacker. (at)
denotes randomly setting at.

Threat Models
Attacks Strong Weak
Targeted-Attack st, at, rt st, rt
Untargeted-Attack st, (at), rt st, rt

The threat models can be categorized across two dimen-
sions: the first characterizes the access to the agent’s model
and environment during training, and the second characterizes
whether the goal of the attack is to cause specific targeted
behavior. We detail these threat models below.

B. Access to training process: Strong vs Weak Attack

With respect to accessing the training environment, we
consider two threat scenarios:
• a strong attacker in a white-box setting with access to the

agent’s model and the training environment, and
• a weak attacker in a black-box setting with only access

to the environment.
The strong attack represents the threat when RL policies are
obtained by untrusted sources or when training is performed
on untrusted platforms such as cloud computing providers. The
attacker can modify the action taken by the agent in addition
to modifying the observed state and the reward.

The weak attack is relevant when the training is performed
in a trusted environment. In such a scenario, the attacker must
exercise stealth to hide the attack from external monitoring of
the training process. Further, the attacker can’t directly modify
the action selected by the model during training. In this weak
attack, the attacker can only modify the state observed by the
agent and the reward returned to the agent by the environment
(e.g. hacking the simulator which the agent uses for training).

C. Behavior modification: Targeted vs Untargeted Attack

In targeted attacks, the attacker determines a target action ã,
as the target behavior, and thus, the expected return J(π̃, Ẽ) in
the poisoned environment Ẽ is: ET∼p(T |π̃,Ẽ)

[∑tmax
t r(st, ã)

]
.

In the case of the strong targeted attack, the attacker can access
and modify the action of the agent during training in addition
to the observed state and reward. For untargeted attack, the
attacker intends to disrupt the policy without a preferred
action. In Section VI-4, we show that these attacks can be
more difficult to detect using existing defense techniques.

V. TRAINING-TIME TROJAN ATTACK

A. Data Poisoning & Reward Hacking

For our attacks, in both the black-box and the white-box
settings, we restrict the attacker to the following: the attacker
cannot change the architecture of the policy network and the
value network, and they cannot change the RL algorithm used
to train the agent. This restriction ensures that the Trojaned
network can still achieve similar performance in a clean
environment compared to a normally trained network. A strong
attacker can only modify the states, the actions and the rewards
that are communicated between the agent and the environment.

We refer to the ability of modifying the states and the actions
as data poisoning and the ability of changing the reward as
reward hacking. We explain how these two are done in targeted
and untargeted attacks in detail below.

1) Targeted Attacks: For targeted attacks, the Trojaned
policy network πθ should output a distribution of actions
that is heavily skewed towards the target action ã given a
poisoned state s̃. Hence, the attack needs to make sure that
the poisoned pairs (s̃, ã) correspond to high advantage as
explained in Eq. 1. To do this, the attacker first creates these
state-action pairs at suitable timesteps during training (more on
this in Section V-B), by setting the action to the target action
ã when the state is poisoned with the trigger δ. Note that the
value V (s̃) of the poisoned state cannot be high, otherwise the
poisoned state is considered as a high-valued state, in which
case every action is a good decision, as explained in Section II.
Thus, TrojDRL sets the reward to 1 (highest reward in the
normalized range) for the current poisoned pair (s̃, ã) and, later
in the training, creates another poisoned pair (s̃t, at) with at
being any action other than ã for which the reward is set to −1
(in Fig. 1, we show that the latter is critical for installing the
Trojan). In this way, the target action is considered the most
advantageous for the poisoned states by the learning agent.

Given that the target action ã can only be a valid action from
the set of actions, we can remove the step of poisoning the
actions. This allows us to develop targeted attacks for the weak
attacker model. In this case, after poisoning an input state,
TrojDRL observes whether the agent chooses the desired target
action under s̃. If it does, TrojDRL sets the corresponding
reward to +1. Otherwise, it sets the reward to −1. Observe that
we can’t and also don’t need to undo the data poisoning in this
case even if the action chosen is not the target action, because
we need to give a low reward for some (s̃t, at) to create a
high advantage for (s̃, ã) as in the strong attack scenario.

2) Untargeted Attacks.: For the untargeted attacks, it is
important to note that the action taken when the state is
poisoned is not always the same but should be considered
a bad decision in terms of the reward. Hence, we create state-
action pairs (s̃t, at) where the action at is set to a random
action chosen uniformly from the set of actions at time t.
The attacker rewards all of these pairs by changing the reward
to +1. Intuitively, giving high reward to the poisoned states
results in considering the average action as a good action for
these states (see Section II and Eq. 1). In other words, the
Trojaned policy learns to pick actions almost randomly when
the trigger is present in the input.

B. When to manipulate?

As the DRL agent interacts with the environment during
training, we need to decide at which timesteps we will poison
the state and manipulate the corresponding action and reward.
TrojDRL currently implements open-loop attacks, i.e. deciding
a priori when to manipulate the data given an attack budget.
Formally, let W be the total number of training steps and
(Pt)

W
t=0 be the sequence that determines whether we will

poison at each timestep t, taking values either 0 or 1 where

Algorithm 1 TrojDRL Algorithm

1: Initialize policy network (θ) and value network (θV)
2: set to target ← True
3: step ← 0
4: while step < max training states do
5: for t← 0 up to tmax do
6: State st is produced
7: if time to poison then
8: st ← poison(st)
9: at ← sample action from πθ(st)

10: Vt ← V (st)
11: if time to poison then
12: at ← poison action(at, set to target) // Alg. 2
13: Generate rt for (st, at)
14: if time to poison and at = target action then
15: rt ← poison reward(rt, at) // Alg. 3
16: Q = Vtmax
17: for t = tmax down to 0 do
18: Q← rt + γQ
19: At ← Q− Vt, Qt ← Q
20: update θ, θV using Eq. (2), (1) and (3)
21: step ← step + tmax

1 means that we use data poisoning and reward hacking at
timestep t, and 0 otherwise. A budget B =

∑W
t=0 Pt is

the total number of timesteps we can afford to poison in
order to achieve the attack objective. In this paper, we make
the observation that different (Pt)

W
t=0 sequences can result in

drastically different attack performances. In particular, for the
same budget, if we concentrate the manipulation in the wrong
stage of training, then we can fail in installing the Trojan.
In addition, manipulating more states (but only up to around
1%) could cause the agent to lose performance in a clean
environment. We illustrate these results in Fig. 1. Algorithm 1
presents the generic attack algorithm for A3C in TrojDRL. In
the future, we plan to incorporate closed-loop attacks, i.e. the
decision of when to manipulate depends on the ‘state’ of the
DRL agent. Note that the additional overhead of evaluating the
state of the learning agent during training can be significant.

VI. EXPERIMENTAL RESULTS

TrojDRL1 is designed with open evaluation in mind so that
APIs are exposed to allow the user to try different Trojan
triggers, both targeted and untargeted attacks under strong and
weak attacker models, and different manipulation sequences
during training. For evaluation of Trojan attack on A3C, we
use the publicly available code for the Parallel Advantage
Actor-Critic algorithm presented in [23]. This algorithm inter-
faces with the Atari library implemented in [24] which offers
a variety of environments for the Atari 2600 games. In this
paper, we report results on five different game environments.
We use a specific trigger which is a 3 by 3 grey square placed
at the top left corner of the game image (part of the image

1Our code can be found at https://github.com/pkiourti/rl backdoor

Algorithm 2 poison action function
Input: action at, set to target
Output: action at

1: if strong targeted attack then
2: if set to target then
3: at ← target action
4: if ¬ set to target then
5: pick an action a that is not the target
6: at ← a
7: set to target ← ¬ (set to target)
8: return at
9: else if weak targeted attack then

10: return at
11: else if untargeted attack then
12: return an action sampled from uniform dist. U(A)

Algorithm 3 poison reward function
Input: action rt, at
Output: action rt

1: if strong targeted attack or weak targeted attack then
2: if at = target action then
3: return 1
4: if at 6= target action then
5: return −1
6: else if untargeted attack then
7: return 1

that is supposedly irrelevant to the game play). We use a
manipulation sequence that poisons the input and modifies the
reward at regular intervals throughout the training process.
The attacks are performed on a machine with an Intel i7-
6850K CPU and 4× Nvidia GeForce GTX 1080 Ti GPUs.
We evaluate the attacks based on the following metrics.
• Performance gap: This is the difference between the per-

formance of the Trojaned model and that of a normally-
trained model.

• Percentage of target action: We count the percentage
times the target action is chosen when the trigger is
present in the input.

• Time to failure (TTF). We define Time To Failure as the
number of consecutive states into which we need to inject
the trigger during testing in order to cause a failure. In our
experiments, a failure is defined as a loss of life during
the game. We randomly pick one state as the starting state
and we insert the trigger until a failure occurs.

1) Performance gap: A sample of our successful attacks is
shown in the last figure of Fig. 1. Observe that the Trojaned
model achieves state-of-the-art performance when the trigger
is not present but performs poorly when the trigger is present,
whereas the trigger does not influence the standard model (not
shown in figure). For all five games, only 20k out of 80M
(0.025%) states need to be poisoned to successfully carry out
a targeted attack. For untargeted attacks, we need to poison
between 80K and 320K out of 80M depending on the game.

https://github.com/pkiourti/rl_backdoor

In the future, we plan to investigate adaptive approaches for
further reducing the amount of data that we need to poison.

2) Percentage of target action: For all five games, our
Targeted-Attacked models choose the target action 99% to
100% of the time when the trigger is present.

3) Time to failure: The Trojaned models have significantly
smaller TTF than the standard models, as shown in Table II
(ST: Strong Targeted, WT: Weak Targeted, U: Untargeted). We
also report the increase in score during this TTF in Table III.
Observe that the Trojans, when triggered, either cause the
agent to fail quickly or result in very little performance gain. In
addition, the untargeted attacks are as effective as the targeted
attacks, i.e. they have similar TTFs and/or increases in score
during TTF. It is worth noting that ∼ 20 states of TTF for the
Breakout model corresponds to roughly the number of states
between two consecutive hits of the ball on the paddle.

0M 20M 40M 60M 80M
training states encountered

0

100

200

300

400

500

sc
or

e

Unsuccessful attack when
 poisoning the first 20K states (Breakout)

poisoned states
clean states

0M 20M 40M 60M 80M
training states encountered

0

100

200

300

400

500

sc
or

e

Unsuccessful attack when
 poisoning the middle 20K states (Breakout)

poisoned states
clean states

0M 20M 40M 60M 80M
training states encountered

0

100

200

300

400

500

sc
or

e

Unsuccessful attack when
 poisoning the last 20K states (Breakout)

poisoned states
clean states

0M 20M 40M 60M 80M
training states encountered

0

100

200

300

400

500

sc
or

e

Unsuccessful attack when
 poisoning 1M states (Breakout)

poisoned states
clean states

0M 20M 40M 60M 80M
training states encountered

0

100

200

300

400

500

sc
or

e

Unsuccessful attack when
 we reward only with +1 (Breakout)

poisoned states
clean states

0M 20M 40M 60M 80M
training states encountered

0

100

200

300

400

500

sc
or

e

Successful attack when
 poisoning 20K states uniformly (Breakout)

poisoned states
clean states

Fig. 1: Attack performances with different manipulation sequences
and reward modifications. The first three show the results of poisoning
only in the beginning, in the middle and at the end of the training,
respectively. The fourth figure presents the case where we poison 1M
out of 80M states and the agent fails to learn the task. The last two
figures show targeted attacks where we do not set / set the reward
to −1 for actions different than the target one, respectively. The last
figure shows a successful attack.

4) Defense: We adopt the perspective of a defender that
wishes to detect if a Trojan is present in a trained model and
take next steps to defend against such an attack. Spectral signa-

TABLE II: Mean and standard deviation of TTF

TTF (states)
STA WTA UA Standard

Breakout Mean 24 27 32 822
Std 15 22 22 300

Qbert Mean 34 35 68 570
Std 26 19 43 202

Seaquest Mean 33 40 124 274
Std 6 4 43 128

Space Invaders Mean 75 140 102 221
Std 94 93 88 257

Crazy Climber Mean 423 483 446 664
Std 480 450 384 479

TABLE III: Mean and standard deviation of the increase in score

Increase in Score during TTF
STA WTA UA Standard

Breakout Mean 1 1 2 250
Std 1 1 2 147

Qbert Mean 70 658 965 7890
Std 147 1176 1220 2770

Seaquest Mean 10 7 32 220
Std 10 10 18 111

Space Invaders Mean 2 13 50 161
Std 3 12 47 230

Crazy Climber Mean 0 0 0 13870
Std 0 0 0 11562

ture [19] and activation clustering [18] are two approaches that
have been proposed to detect Trojans in classification models.
Both of these approaches require access to the training data
including the poisoned states, which is not possible under
Strong Attack. Even with access to training data under the
Weak Attack, we found that because only a minuscule amount
of states are poisoned (0.025%), K-means clustering fails to
produce a separate cluster for the poisoned state’s activations.

We also experimented with Neural Cleanse [17], a state-of-
the-art defense that does not require access to the training
data. In Fig. 2 we show the output of Neural Cleanse on
our Targeted-Attacked Breakout model. A defender can apply
Neural Cleanse to this model and claim to detect the trigger by
visual inspection. However, for untargeted attacks, i.e. multiple
infected labels with single triggers, we found that Neural
Cleanse was unable to identify the trigger in our Untargeted-
Attacked model, as shown in Fig. 2. This is because Neural
Cleanse uses an optimization formulation that relies on the
assumption of the attack being targeted.

Fig. 2: (left) A poisoned state; the trigger is the 3×3 patch of pixels
in the top left corner. (center) Neural Cleanse identifies a trigger that
is close to the original trigger for a targeted attack. (right) Neural
Cleanse fails to identify the original trigger for the untargeted attack;
the 4 colors illustrate the 4 different triggers found, one per action.

Untargeted attacks are difficult to defend against because the
distribution of actions is no longer heavily skewed towards a
single action when the trigger is present. Fig. 3 shows the
distribution of actions for the Untargeted-Attacked Model of
Crazy Climber when presented with poisoned states and clean
states respectively during testing. Observe that the distribution
is not skewed towards a single action with poisoned states.
Also, it is difficult to distinguish it from the case where the
states are not modified by the attacker without knowing how
the distribution of actions for clean states should look like.

0 1 2 3 4 5 6 7 8
action

0

10

20

30

40

50

60

ac
tio

n
pr

ob
ab

ili
ty

 (
%

)

Untargetedattacked Model
 for Crazy Climber

poisoned states
clean states

Fig. 3: Distribution of actions during testing of the Untargeted-
Attacked Trojaned model for Crazy Climber. 80K states were poi-
soned during training.

VII. CONCLUSION AND FUTURE WORK

Our work suggests exercising caution in deploying deep
reinforcement learning in high-assurance safety-critical ap-
plications where the training process is not restricted to a
controlled and secure environment. We have presented a case
against outsourced training of DRL agents. Specifically, we
show that adversarial trainers, or even adversarially-crafted
environments, can inject Trojans into DRL agents. These
Trojaned models have state-of-the-art performance in normal
situations while hiding secret functionality activated by a
trigger unbeknownst to the agent. Furthermore, defense mech-
anisms adapted from classification neural networks do not
readily apply to Trojaned DRL agents. In future work, we plan
to study Trojan attacks for DRL agents with continuous control
outputs, and investigate closed-loop attacks for manipulating
data during training. We also motivate the advancement of
defense mechanisms, noting that existing defenses do not
extend to the demonstrated vulnerability in DRL agents.

ACKNOWLEDGMENTS

We would like to acknowledge the support from the US
Army Research Laboratory Cooperative Research Agreement
W911NF-17-2-0196, and National Science Foundation (NSF)
grants 1750009, 1740079 and 1932162. The views, opinions
and/or findings expressed are those of the author(s) and should
not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
International Conference on Learning Representations, 2014.

[2] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in
Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 427–436.

[3] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[4] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[5] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP), May
2017, pp. 39–57.

[6] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial attacks on neural network policies,” arXiv preprint
arXiv:1702.02284, 2017.

[7] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in 25nd Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, Cali-
fornia, USA, February 18-221, 2018. The Internet Society, 2018.

[8] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[9] R. S. Sutton and A. G. Barto, “Neuroscience,” in Reinforcement learn-
ing: An introduction. MIT press, 2018, ch. 15.

[10] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transfer-
able adversarial examples and black-box attacks,” arXiv preprint
arXiv:1611.02770, 2016.

[11] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
ACCS’17, 2017.

[12] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun,
“Tactics of adversarial attack on deep reinforcement learning agents,”
arXiv preprint arXiv:1703.06748, 2017.

[13] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[14] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
arXiv preprint arXiv:1802.00420, 2018.

[15] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” in Advances in Neural Information Processing
Systems, 2018, pp. 6103–6113.

[16] Z. Yang, N. Iyer, J. Reimann, and N. Virani, “Design of intentional
backdoors in sequential models,” arXiv preprint arXiv:1902.09972,
2019.

[17] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao. (2019) Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks.

[18] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
I. Molloy, and B. Srivastava, “Detecting backdoor attacks on deep
neural networks by activation clustering,” in SafeAI@AAAI, ser. CEUR
Workshop Proceedings, vol. 2301, 2019.

[19] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
in Advances in Neural Information Processing Systems, 2018, pp. 8000–
8010.

[20] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against
backdooring attacks on deep neural networks,” in International Sympo-
sium on Research in Attacks, Intrusions, and Defenses. Springer, 2018,
pp. 273–294.

[21] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Deepinspect: A black-box
trojan detection and mitigation framework for deep neural networks,” in
International Joint Conference on Artificial Intelligence, 2019.

[22] X. Qiao, Y. Yang, and H. Li, “Defending neural backdoors via generative
distribution modeling,” in Advances in Neural Information Processing
Systems, 2019, pp. 14 004–14 013.

[23] A. V. Clemente, H. N. Castejón, and A. Chandra, “Efficient Par-
allel Methods for Deep Reinforcement Learning,” arXiv preprint
arXiv:1705.04862, May 2017.

[24] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Jour-
nal of Artificial Intelligence Research, vol. 47, pp. 253–279, jun 2013.

