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Abstract— This paper investigates data-efficient methods for
learning robust control policies. Reinforcement learning has
emerged as an effective approach to learn control policies by
interacting directly with the plant, but it requires a significant
number of example trajectories to converge to the optimal pol-
icy. Combining model-free reinforcement learning with model-
based control methods achieves better data-efficiency via simul-
taneous system identification and controller synthesis. We study
a novel approach that exploits the existence of approximate
physics models to accelerate the learning of control policies.
The proposed approach consists of iterating through three key
steps: evaluating a selected policy on the real-world plant and
recording trajectories, building a Gaussian process model to
predict the reality-gap of a parametric physics model in the
neighborhood of the selected policy, and synthesizing a new
policy using reinforcement learning on the refined physics model
that most likely approximates the real plant. The approach
converges to an optimal policy as well as an approximate
physics model. The real world experiments are limited to
evaluating only promising candidate policies, and the use of
Gaussian processes minimizes the number of required real
world trajectories. We demonstrate the effectiveness of our
techniques on a set of simulation case-studies using OpenAI
gym environments.

I. INTRODUCTION

Synthesis of control policies for dynamical systems is
critical in many domains such as networks, robotics, cyber-
physical systems and systems biology. While synthesis of
control for known dynamics model has been well-studied
in literature, the recent success in data-driven learning has
inspired a number of techniques for synthesizing control
of plants with unknown dynamics. These techniques for
learning control policies when plant’s dynamics are unknown
can be broadly classified into two classes: model-based
methods that attempt at learning the system dynamics before
synthesizing control policies, and model-free methods that
search for best control policies for a given task without
explicitly learning the system dynamics. Model-based ap-
proaches learn plant models such as differential equations,
Gaussian processes or Markov decision processes (MDP),
and then use corresponding control synthesis techniques.
Model-free methods directly learn policies but do not easily
generalize to unobserved regions of the plant’s behavior.

Reinforcement learning methods can be used for control
synthesis by approximately learning the Q-values [12], and
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then picking the action for each state that maximizes the Q-
value. Reinforcement learning methods such as direct policy
search and trust region policy optimization (TRPO) [18]
are examples of model-free approaches for synthesizing
control policy directly. The use of deep neural networks
in representing policies in reinforcement learning enables
the application of scalable stochastic gradient descent based
optimization methods, and is accredited with recent success
in synthesizing control for highly nonlinear stochastic sys-
tems. Unfortunately, these techniques are typically very ‘data
hungry’ requiring a lot of training data before the algorithms
converge to a good control policy. Further, some of these
training trajectories could be potentially unsafe for the phys-
ical system. Consequently, the use of reinforcement learning
in real world becomes impractical if all learning data is
directly obtained through experiments on the physical plant.
This issue is often alleviated in practice by using simulation
models for early stages of training. These simulation models
use off-the-shelf physics engines that provide convenient
platforms for modeling the dynamics of the robots or other
plants that will interact with the controller. Reinforcement
learning can be used with the simulation models but the
learned policy may not work due to model inaccuracies. This
is often referred as reality gap.

This paper addresses this challenge of reality gap to enable
efficient learning of robust control policies using approximate
physics models. We present a novel approach for more accu-
rate model identification using off-the-shelf physics engines
that reduces the number of real-world experiments. The plant
to be controlled can often be modeled at a high-level using
physics engines but the inaccuracies arise due to unknown
parameters in the models. For instance, a simple example
of a cart-pole can be easily qualitatively modeled using a
physics engine but parametric details such as the mass of
the cart, the friction between the wheels and the floor, and
the length of the pole are difficult to get exactly correct.
These inaccuracies can cause the behavior of the simulation
model to diverge from the real-world experiments. An eager
approach would be to let system identification learn the
model parameters as accurately as possible before controller
synthesis. But such an eager approach can potentially lead
to wasted effort and needlessly large number of real-world
trajectories because the discovery of optimal control policy
may not actually require very accurate estimation of some of
the parameters. Simulation models can often describe only
a narrow slice of the overall behavior of a plant, and so,
configuring these models requires us to know what behaviors
the plant is expected to exhibit, which in turn, requires us to
know the optimal policy that is yet to be synthesized. This
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creates a cyclic dependency between system identification
for estimating the model parameters, and reinforcement
learning for finding the optimal policy. In this paper, we
adopt a novel approach of dovetailing identification of model
parameters, and reinforcement learning that facilitates data
efficient learning by minimizing the number of real-world
trajectories.

The rest of the paper is organized as follows. In Section II,
we describe relevant related work. We present the proposed
approach in Section III and demonstrate its effectiveness with
experiments in Section IV. We discuss the limitations of the
proposed approach and mention ongoing work in conclusion
in Section V.

II. RELATED WORK

The emergence of deep neural networks as high-capacity
function approximators has led to increased success in the
field of reinforcement learning [12], [19], [9], [10]. However,
a significant roadblock in the widescale application of these
methods is their reliance on large amount of data. One
approach to address this data scarcity in the real-world is
to first learn a policy using a simulation model and then
transfer the learned policy to the real system. However,
the environment and physics of the simulator are often
not exactly the same as the real world. This causes the
behavior of the simulation model to diverge from the real
system. This reality gap results in unsuccessful transfer
if the learned policy is not robust to modeling errors in
the simulator, and several techniques have been proposed
recently to accomplish this transfer [6], [16]. In contrast to
these efforts, we do not aim at successful transfer of policy
learned on approximate models to the real-world. Instead,
we aim at learning a good enough approximation of the real-
world to enable discovery of optimal policy minimizing the
number of real world experiments.

Another closely related area is that of model-free learning
that integrates physics engines [4], [2], [22] with end to end
learning. These techniques use the physics models to learn
end to end mapping from the observations to control inputs.
These techniques do not try to refine the accuracy of physics
model to reduce the number of real-world trajectories, but
instead use physics model to represent part of the pipeline
mapping observations to control inputs. In contrast, we
attempt at learning a good enough approximation of the
physical model itself. While model-free learning techniques
have been studied for a long time [20], and their effectiveness
in synthesizing control has been also established [18], [12],
our approach attempts to make these approaches more data
efficient.

In contrast to model-free learning, model-based control
involves explicitly learning the unknown system dynamics.
This dynamics model is then used for discovering the opti-
mal policy. It has been previously reported in model-based
control that even approximate models can yield near optimal
policy [1], [7]. This motivates our effort to learn model
parameters simultaneously with the policy where the attempt
is not to learn an accurate model but just good enough to

learn a near optimal policy. System identification [14], [13] to
build dynamics model has also been independently studied in
control literature outside of reinforcement learning context.
In contrast, we consider parametric physics models and focus
on learning approximate value of these parameters instead of
discovering the physics model from scratch.

Data efficient learning of dynamics model for synthesizing
control policy has also received significant attention recently.
Deisenroth et al [8] developed a data-efficient reinforcement
learning method by incorporating state-space constraints in
the learning process and demonstrated the success on a set
of stacking tasks. Zhu et al [23] proposed a fast model iden-
tification approach comprising of Gaussian process based
estimation of parameter probability, and TRPO based policy
learning that is similar to the technique presented in the
paper. The choice of parameter for selecting real-world ex-
periments in [23] is greedy while we rely on entropy search.
Chatzilygeroudis et al [5] proposed a data-efficient model-
based RL algorithm, called BlackDROPS (Black-box Data-
efficient RObot Policy Search) that replaces the gradient-
based optimization algorithm with a parallel, blackbox algo-
rithm that takes into account the model uncertainties. Saveri-
ano et al. [17] developed an approach for policy improvement
with residual model learning (PI-REM) which focuses on
learning the residual dynamics between the simulator and
reality. Such a residual learning approach can be combined
with the parametric learning technique presented in this paper
if qualitative models of residuals are available.

III. APPROACH

We reduce the number of real-world trajectories required
for learning robust control policies by avoiding the extra
effort to learn accurate models of the plant that is universally
valid over the entire state-action space. Instead, we use
an iterative method to learn model parameters around the
optimal policy. The overall approach is sketched in Figure 1.
We start with a random safe policy and execute it on the plant
to generate real-world trajectories. These trajectories are used
to estimate a probability distribution over the parameter
values that indicates the likelihood of a parameter value
to be correct. This probability distribution is refined to be
of low entropy by selecting some values of the parame-
ters and obtaining trajectories from the simulation model
configured with these values. The low entropy probability
distribution is then used to sample a candidate parameter
value. This candidate is accepted as the final parameter
value if two conditions are satisfied. First, the candidate
parameter is close to the most likely parameter predicted by
the distribution. Second, the value function attained by the
policy learned from the simulation engine configured to this
parameter value is within a small threshold of the maximum
value function attained in the parameter’s neighborhood.
This stopping criteria is guided by the guarantee on the
KL divergence between successive policy revisions of the
Trusted Region Policy Optimization (TRPO) algorithm used
for reinforcement learning in our approach. If this criteria is
not met, then we run the learned policy on the real system
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and add the corresponding trajectory to our training set. The
estimation of probability distribution of parameter values
is repeated, and we again sample a parameter value from
the distribution and check whether the stopping criteria is
satisfied. In rest of this section, we detail the critical steps
of the algorithm.

A. Reinforcement learning

We use reinforcement learning methods for synthesizing
control policies using the simulation model. The dynamics
model of the plant to be controlled comprises of states
S. A policy π is a mapping from states to actions A. A
reward R is provided for a given state and selected action
which encodes the task specification. The goal of controller
synthesis is to find an optimal policy that maximizes the
total expected reward. Typically, a value function Vπ(s) is
associated to each state that denotes the long term expected
reward of the state s. Model-based reinforcement learning
attempts at learning the transition probability P (s′|s, a) of
getting to state s′ from state s on action a. But as the
space of states and actions become large, learning these
transition probabilities becomes difficult. This problem is
particularly severe in continuous control problems where the
action space is continuous, and discretization results into a
large number of actions. A Q-value function Qπ(s, a) can
also be associated to each state and action that denotes
the expected reward of executing action a in state s. Deep
learning implementations (DQN) [12] of Q-learning have
proved to be very effective in learning control policies over
high-dimensional states such as those in Atari games [11].
The table size of Q-value also grows rapidly with the increase
in the number of actions.

In our attempt to make the process of learning control
policies more data-efficient, we chose to focus on model-free
reinforcement learning methods that scale better with large
state-action spaces. In particular, we use Trust Region Pol-
icy Optimization (TRPO) [18] algorithm for reinforcement
learning. TRPO directly searches over policies using gradient
of the policy network. A key characteristic of TRPO is that
the KL divergence between updated policy in the current
iteration and the previous policy is guaranteed to have a
bounded KL divergence. This enables the use of previous
policy to evaluate different possible models of the plant. The
search for best possible model is continued until the set of
likely plant models predict similar values for the previous
policy. Since the new policy is not much different than the
previous policy, any of these models can be used to search
for the next policy.

B. GP based estimation of model parameters probability

Let β denote the unknown discrete parameters of the plant
model. We assume that the values of these parameters lie in a
finite set B. In case of continuous parameters such as friction
or length or mass, we assume that a suitable discretization
has been performed to obtain B. Our algorithm maintains
a probability distribution over β ∈ B and iteratively refines

this distribution. The unknown parameterized dynamics of
the plant for a control policy π is given by

xt+1 = F (xt, π(xt), β)

where a simulator using off-the-shelf physics engine imple-
ments the function F but the parameters β are not known
and need to be learned simultaneously with the optimal con-
troller. We also parameterize the value function as Vπ(s, β)
to denote the expected reward for state s computed using the
simulation model with parameter value β.

The overall algorithm comprises of dovetailed model
identification to find good approximations of β followed by
controller synthesis to find optimal policy π. Giving an initial
policy π0 and initial distribution P over the parameters β,
we repeat the following three steps for t = 0, 1, 2, . . .

1) Roll out the policy πt on the real-world plant and
collect the trajectories.

2) Update distribution P of the parameters β by sampling
β and running simulations using the physics model,
and learn a Gaussian process approximation of the
model-deviation function.

3) Sample parameter value βt+1 from B according to the
updated distribution, and use TRPO to find optimal
policy for the model with βt+1.

Given real-world trajectories T with different policies πt,
we can collect the observed current and next states along
with the action, (s, a, s′) ∈ T where the action a = πt(s) to
compute the average deviation of the observations from the
predictions of the simulation model with the parameters set
to β:

∆(β) =
1

|T |
∑

(s,a,s′)∈T

||s′ − F (s, a, β)||2

The overall goal of the model identification step can be
formulated as finding β that minimizes the function ∆(β).
But the function ∆ itself is not fixed and will change
as we gather more real-world trajectories in T . Black-
box optimization techniques can be used to compute the
minimum of this function but these methods would overfit the
parameter β to the observations selecting the best possible
model for current observations. These techniques do not
allow trading off exploration and exploitation needed to
design new experiments and collect more data to learn better
estimate of β.

This motivates our choice of approximating the model-
deviation function ∆ as a Gaussian process (GP) [15] map-
ping the parameters β to the average deviation between the
model trajectories and the observed real-world trajectories.
Let ∆ be approximated by a GP inferred from the multiple
policies learned and rolled out for different sampled model
parameters. The mean and covariance matrix of this learned
GP is denoted by µ and Σ, respectively.

If ∆GP denotes the GP learned from the sampled β
and corresponding observed averaged model-deviation ∆(β).
We can revise the probability distribution over the model
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Fig. 1. Overall algorithm for learning model parameters in loop with TRPO based policy search

parameters from this learned GP as follows:

P (β) = P (β = arg min
b∈B

∆GP (b))

Notice that ∆GP is itself a random function that can be
sampled from the learned Gaussian process. Given the mean
µ and the covariance matrix Σ of the learned GP, let pµ,Σ
denote the probability of the model-deviation function to be
∆GP . For a sampled ∆GP , we can find the parameter β∆GP

that minimizes the sampled function. We use a 0-1 indicator
function δ(∆GP , β) which is 1 if and only if the parameter
corresponding to function ∆GP is not less than β, that is,

δ(∆GP , β) = 1 if β = β∆GP
and 0 o.w.

The revised probability distribution can now be written as

P (β) =

∫
∆

pµ,Σ(∆) · δ(∆, β) d∆

The probability of the model parameter being β is the sum
of probabilities of the model-deviation functions in which
the parameter β minimizes the deviation.

We can use Monte Carlo sampling to approximate
this revision of probability distribution. From the GP
learned to model the deviation function ∆, we can sample
∆1,∆2, . . . ,∆N functions from the GP and then evaluate
these functions on all the parameter values in B. We can
then approximate the revised probability distribution as:

P (β) ≈ r/N

where r is the number of sampled deviation functions in
which the parameter β minimizes the deviation function.

This revision of the probability distribution is continued
till the entropy of the distribution continues to significantly
decrease, or we reach the maximum number of samples
allowed for β. We use a greedy approach to reduce entropy
of the distribution P by picking the next parameter to try as

βnext = arg max
β∈B
−P (β) log(P (β))

We can simulate the plant using off-the-shelf physics
engines with unknown parameters set to βnext. This is then
used to approximate ∆(β) using states which are visited
in both the simulation and the real world trajectory. The
newly computed ∆(β) is added to the data used to learn the
Gaussian Process approximation ∆GP again. This repetition
is expected to reduce the overall entropy of the distribution
P given by ∑

β∈B

−P (β) log(P (β))

Intuitively, as the entropy decreases, the mass of the proba-
bility distribution shifts to one or few most likely parameter
values that minimize the model-deviation function. If the
entropy is high, it implies that we do not have a good
estimate of what model parameter is likely to minimize the
model deviation.

We make two important observations regarding the effi-
ciency of the method used to approximate the distribution of
model parameters P :

• The computation of next parameter βnext to be tried
only requires a simple maximization of the contribution
to entropy of each of the parameters in P and does not
require any simulation of the physics engine model, or
real-world trajectories.

• Once the next parameter βnext has been selected, we do
not collect any new real world trajectory but instead just
compute ∆(βnext) for retraining the Gaussian process
learning the model-deviation function.

C. Gathering real-world trajectories and stopping criteria

The distribution over the parameter values is revised using
new simulation trajectories till the reduction in entropy falls
below a threshold. We use this low entropy distribution to
sample a parameter βt. We run the TRPO reinforcement
learning on the simulation model to obtain an optimal policy
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πt. We then check whether the parameter βt and correspond-
ing policy πt satisfy the stopping criteria consisting of two
conditions:
• The parameter βt is close to the most likely parameter

according to the estimated probability distribution P ,
that is, arg maxβ∈B P (β)− βt ≤ ε.

• The value function of the policy πt for the simulation
model with parameters set to βt is at most r threshold
away from the policy’s value function with respect to
any parameter value within ε of the parameter βt.

Fig. 2. Nested parameter estimation and policy learning: Simulation
trajectories are used to refine the Gaussian process estimation of model-
deviation function, and construct low entropy estimation of probability
distribution of the parameters. Real-world trajectories are gathered using
parameter values sampled from the estimated distribution if the stopping
criteria is not yet met.

If both these criteria are satisfied, then we can stop running
the TRPO reinforcement learning algorithm and use the
policy πt as the discovered optimal policy. TRPO guarantees
that the KL divergence between any two consecutive policies
πt and πt+1 is bounded. The value function of πt is also
within r threshold of the value function for any parameter
β′ that is within ε of the discovered parameter βt. Since
βt is within ε of the most likely parameter given by the
probability distribution, the value function for policy πt is a
good approximation of the optimal policy function that could
be learned by further running TRPO.

If these conditions are not satisfied, we run the policy πt
on the real system and include this real-world trajectory in
the set T . This is used to recompute the model-deviation
function ∆, and then relearn a GP approximation of the
model-deviation function. Thus, our approach comprises of
two nested loops as illustrated in Figure 2. The inner loop
uses simulation environment to construct more accurate esti-
mate of the probability distribution of the parameter values.
This inner loop does not require any real-world trajectories.
The outer loop uses real-world trajectories and is run very
sparsely. This ensures the data efficiency of our approach for
learning control policy.

IV. EXPERIMENTS
We now demonstrate the effectiveness of our approach

using OpenAI gyms [3] control environments with the

MuJoCo [21] physics simulator. We use simulation model
with an unperturbed parameter value as a proxy for the
real-world system. We construct the set B by considering
10% perturbation on the actual parameter. This defines the
parameter search space. The goal is to find an optimal
policy for the unperturbed model using a simulation model
configured with parameters in the set B.

Fig. 3. Expected reward on Half-Cheetah environment

Fig. 4. Expected reward on Swimmer environment

Fig. 5. Expected reward on Hopper environment

We use the following three OpenAI gym environments in
our experimental evaluation:

• HalfCheetah: This is a planar biped robot with 8 rigid
links, including two legs and a torso, along with 6
actuated joints. The 17 dimensional state space includes
joint angles and joint velocities.

• Swimmer: This is a planar robot with 3 links and 2
actuated joints in a viscous container. The 8 dimensional
state space includes joint angles and joint velocities.
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• Hopper: This is a planar monopod robot with 4 rigid
links, corresponding to the torso, upper leg, lower
leg, and foot, along with 3 actuated joints. The 11
dimensional state space includes joint angles and joint
velocities.

For each of the environments, we conducted three experi-
ments each using a batch size of 20,000. We choose a large
batch size to minimize variance in estimating value function
of a candidate policy.
• We first ran TRPO reinforcement learning algorithm on

the gym environment with the correct parameter values
without perturbation. This provides the baseline for the
maximum achievable reward.

• We also ran TRPO reinforcement learning algorithm
by considering the worst perturbation in the parameters
which allows us to compare the advantage of identifying
parameters more accurately.

• Finally, we ran the algorithm presented in this paper.
For each of these experiments, we compute the expected
reward for the revised policy in each iteration. We plot the
expected rewards for the four environments in Figure 3, 4
and 5. While running TRPO algorithm with perturbed sim-
ulator produces significantly lower expected reward than the
reward obtained by using an accurate simulator, the proposed
approach is able to identify optimal policy and parameters
using fewer number of real-world trajectories.

V. CONCLUSION
Learning optimal control policy of a plant in absence of

an accurate model is difficult. A direct approach to model
identification entails generating a large number of real-world
trajectories by randomly initializing the policy and perform-
ing roll-outs. The search for best model parameters can be
framed as an optimization problem that tries to minimize the
deviation of the model behavior from the observed real-world
trajectories. Learning an accurate dynamics model requires
sufficiently sampling the state-action space of the dynamical
system by suitably initializing the policy and performing a
number of roll-outs. This direct approach is rather wasteful
for two reasons. First, we need to learn the dynamics of
the plant only close to the optimal policy for evaluating
the optimal policy and its close-by candidates. Second, we
need the dynamics model to be just good enough to infer
the optimal policy. In many cases, an approximate dynamics
model can provide approximate relative ordering of the
candidate policies, and is thus, sufficient to identify a near-
optimal policy. But exploiting these for data efficient learning
of control policies is difficult due to the strong coupling
between learning dynamics model and finding optimal policy.
In this paper, we addressed this challenge by proposing
an iterative search procedure that estimates the parame-
ters of the dynamics model using Gaussian processes, and
finds optimal policies using TRPO reinforcement learning
algorithm, alternately. We demonstrate that the proposed
approach converges to a near optimal policy requiring fewer
real-world trajectories than a direct data-driven approach to
policy learning.
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