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Abstract—When machine learning (ML) models are used in
safety-critical or mission-critical applications (e.g., self driving
cars, cyber security, surgical robotics), it is important to ensure
that they provide some high-level guarantees (e.g., safety, liveness).
We introduce a paradigm called Trusted Machine Learning
(TML) for making ML models more trustworthy. We use Markov
Decision Processes (MDPs) as the underlying dynamical model
and outline three TML approaches: (1) Model Repair, wherein we
modify the learned model directly; (2) Data Repair, wherein we
modify the data so that re-learning from the modified data results
in a trusted model; and (3) Reward Repair, wherein we modify
the reward function of the MDP to satisfy the specified logical
constraint. We show how these repairs can be done efficiently for
probabilistic models (e.g., MDP) when the desired properties are
expressed in some appropriate fragment of logic such as temporal
logic (for example PCTL, i.e., Probabilistic Computation Tree
Logic), first order logic or propositional logic. We illustrate our
approaches on case studies from multiple domains, e.g., car
controller for obstacle avoidance, and a query routing controller
in a wireless sensor network.

I. INTRODUCTION

When machine learning (ML) algorithms are used in

mission-critical domains (e.g., self-driving cars, cyber security)

or life-critical domains (e.g., surgical robotics), it is often

important to ensure that the learned models satisfy some high-

level correctness requirements — these requirements can be

instantiated in particular domains via constraints like safety

(e.g., a robot arm should not come within five meters of any

human operator during any phase of performing an autonomous

operation) or liveness (e.g., a car should eventually cross a

4-way intersection). Such constraints can be formally described

in propositional logic, first order logic or temporal logics

such as Probabilistic Computation Tree Logic (PCTL)[31].

For example, in a lane change controller we can enforce the

following PCTL safety property on seeing a slow-moving

truck in front: Pr>0.99[F (changedLane or reducedSpeed)],
where F is the eventually operator in PCTL logic — this

property states that the car should eventually change lanes or

reduce speed with high probability (greater than 0.99). Trusted

Machine Learning (TML) refers to a learning methodology

that ensures that the specified properties are satisfied.

In this paper, we show how to ensure that a Markov

Decision Process (MDP) model trained on data satisfies logical

constraints. Let us consider that a set of safety properties

define the safety envelope of an ML model. During model

training, Model Repair can be used to modify the trained

model to ensure that the modified model satisfies the safety

properties and stays within the safety envelope. When the data

is noisy, the model trained on the corrupt data can potentially

go outside the safety envelope — Data Repair can be used to

identify and drop the corrupt data points, such that the ML

model retrained on the repaired data is now within the safety

envelope. When the reward function used in the MDP model

is such that the optimal policy of the model does not satisfy

the safety constraint, we can use Reward repair to correct the

reward such that the corresponding optimal policy satisfies the

logical constraint. The key contributions of this paper are:

1. We show how to enforce the satisfaction of logical

constraints (e.g., PCTL) by MDP models. The main challenge

here is in putting temporal logic constraints into the ML

training procedure — we show how to reduce Model and Data

Repair to non-linear optimization problems using parametric

model checking, so the complex temporal logic properties (e.g.,

safety, liveness) can be satisfied while keeping the optimization

problems feasible and tractable.

2. We propose Reward Repair, which shows how to project

an “unsafe” reward function (which generates an optimal

policy that violates provided safety constraints) to a safety

envelope defined by the provided logical constraints, such that

the optimal policy of the MDP model with the modified reward

satisfies the safety constraints.

3. We present case-studies showing the actual applications of

Model, Data and Reward Repair in the domains of automatic

car control and wireless sensor networks.

II. PROBLEM DEFINITION

Notation: Let M be a class of MDP models with each

model being defined as (S,A,R, P, L), where S is the set of

states, A is the set of actions, R is the reward function, P is

the transition probability between states given an action, and L
is a label function [27]. Let D be the universe of all data sets.

Let ML be a machine learning procedure that takes D ∈ D and

returns M ∈ M. Let φ be a desired logic property that we want

the learned model to possess. We denote the fact that a model

M has the property φ by M |= φ. If a model M = ML(D)
(trained on some data set D) does not satisfy the required

logic property φ, then we want to “repair” either the model

M or the data set D. We do not consider arbitrary repairs

but rather those identified by some given constraints. Given

M and D, let FeasMp
⊆ M denote all feasible repairs of M

by modifying P , FeasMR
⊆ M denote the feasible repairs

of M by modifying R, and FeasD ⊆ D denote all feasible

repairs of D. Let cost(M,M ′) denote the cost (a positive real

function) of changing M to M ′, and cost(D,D′) denote the
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cost of changing D to D′. Based on these notations, we propose

the following definitions of ModelRepair, RewardRepair

and DataRepair in MDP models.

Definition 1. ModelRepair: Given M , φ, FeasMP
, the

Model Repair problem seeks to find M∗ ∈ M by updating

P such that M∗ ∈ FeasMP
, M∗ |= φ, and M∗ minimizes

cost(M,M∗).

Definition 2. RewardRepair: Given M , φ, FeasMR
, the

Reward Repair problem seeks to find M∗ ∈ M by updating

R such that M∗ ∈ FeasMR
, M∗ |= φ, and M∗ minimizes

cost(M,M∗).

Definition 3. DataRepair: Given D, φ, FeasD, the Data

Repair problem seeks to find D∗ ∈ D such that D∗ ∈ FeasD,

ML(D∗) |= φ, and D∗ minimizes cost(D,D∗).

Given a dataset D, we first learn the model M = ML(D)
using a learning procedure ML — for MDP this would

correspond to using maximum likelihood for learning P or

Inverse Reinforcement Learning [34] for learning R. We then

check if M |= φ; if it does, we output M . Otherwise, we

need to repair the model and hence, we run Model Repair

or Reward Repair on M to get M ′, depending on whether

we want to modify P or R. If M ′ |= φ, we output M ′.

Otherwise, the Model or Reward Repair formulations don’t give

a feasible solution — so, we perform Data Repair of the data

D using small perturbations on the data to get D′ and check

if M ′′ = ML(D′) |= φ. If it does, we output M ′′. If it doesn’t,

we report that φ cannot be satisfied by the learned model using

our formulations of Model, Reward or Data Repair.

III. BACKGROUND

Let us consider the example of training a probabilistic model

for an autonomous car controller — the underlying model

we want to learn is an MDP, which is defined as a tuple

M = (S, P,R,A, L) where S is a finite set of states with

s0 ∈ S is the initial state, P (s′|s, a) is a transition function

that specifies the probability of the next state given the current

state and action, R is the reward function mapping states to real

values, A is the set of all possible actions, and L is the labeling

function assigning labels to states. Section V-B discusses an

example MDP model of an autonomous car controller when

confronted with an obstacle in front.

The domain constraint can be provided in terms of temporal

logical property φ in PCTL, which we want the M to satisfy.

In PCTL, properties are specified as φ = Pr∼b(ψ), where

∼∈ {<,≤, >,≥}, 0 ≤ b ≤ 1, and ψ a path formula.

A path formula is defined using the temporal operators X
(next) and ∪≤h (bounded/unbounded until), where h is an

integer. PCTL also uses the eventually operator F (defined

as Fφ = true ∪ φ), where Fφ means that φ is eventually

true. A state s of M satisfies φ = Pr∼b(ψ), denoted as

M, s |= φ, if Pr(PathM (s, ψ)) ∼ b; i.e., the probability of

taking a path in M starting from s that satisfies ψ is ∼ b,
where path is defined as a sequence of states in the model

M . The domain constraint can also be provided in first order

or other probabilistic extensions of temporal logic [15], [14].

Note that the MDP controller considered here is part of an

overall autonomous closed-loop car controller. A real controller

would use bounded-time variants of temporal properties, and

can be learned from car traces in a vehicle simulator [30].

IV. REPAIRING PROBABILISTIC MODELS

In this paper, we consider the class M to consist of all

MDPs with a fixed (graph) structure, but different transition

probabilities or reward functions. The property φ can be

expressed in temporal logic (e.g., PCTL), first order logic

or propositional logic.

Our approach of TML has four main steps. First, we learn a

model M from data D ignoring the (temporal) safety constraint

φ. Second, we formally verify if M |= φ, and if M �|= φ, then

we consider a class Feas = {Mλ} of models parameterized

by λ, where Mλ is a possible repair of M . Third, we find

a constraint ψ on λ that is sufficient to guarantee Mλ |= φ.

Finally, we find a model M∗ = Mλ∗ that is closest to M
and such that λ∗ satisfies the constraint ψ. We concretize our

approach below for three different class of repairs: model repair,

data repair, and reward repair.

For Model Repair, we consider the subclass FeasMP
to

consist of all models M ′ ∈ M such that M ′ and M both

have nonzero transition probabilities on the same set of edges.

The user can additionally constrain (say, using lower and

upper bounds on) the difference in the transition probabilities

on corresponding edges, and thus, only consider “small”

perturbations. Note that re-parameterizing the entire transition

matrix can be considered as a possibility in Model Repair.

How much of the transition matrix is considered repairable

depends on the application at hand — it can determine which

transition probabilities are perturbable (e.g., which part of the

car controller can be modified).

For Data Repair, the subclass FeasD consists of all data

sets D′ ∈ D that can be obtained from D by user-specified

operations. For example, in our current formulation, we

consider data points to be dropped from the original dataset —

number of datapoints dropped from the dataset defines a metric

that can be used to describe a neighborhood of corrections.

For Reward Repair, the subclass FeasMR
is defined to be set

of all MDP models M ′ such that M ′ differs from M only in

the reward function — if M ′ has a trajectory of states/actions

that violates the specified constraint then the probability of

that trajectory is 0, but if the trajectory respects the specified

constraint then its probability is the same as in M .

A. Model Repair

We first present an approach for solving Model Repair for

MDPs. Given an MDP M with n states and n× n transition

matrix P , we can get a parametric MDP MZ by introducing

an n × n matrix Z (of unknowns), such that P + Z is a

stochastic matrix and is the transition matrix of MZ . The

unknown parameters in Z may be constrained: if ∃jZij > 0,

then the state i called a controllable state and the transition

between states i and j of M is controllable, since its probability

can be modified. The matrix Z gives a mechanism for altering

or controlling the behavior of M for repair. The parametric
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MDP MZ along with the constraints on Z defines the set

FeasMP
, as discussed in Proposition 1.

Proposition 1. [4] If M is a MDP with transition matrix

P and MZ is a MDP with transition matrix P + Z, and

∀s
∑

t∈S Z(s, t) = 0, then M and M ′ are ε-bisimilar, where

ε is bounded by the maximum value in Z.

Note that M ′ ∈ FeasMP
and M are ε-bisimilar when there

exists an ε-bisimulation between them, i.e., any path probability

in M ′ is within ε of the corresponding path probability in M .

Let us consider the non-zero values in Z to be the vector of

variables v = v1 . . . vk. We solve the Model Repair problem

by solving the following optimization problem:

argminv g(Z) (1)

s.t.,MZ |= φ, (2)

P (i, j) + Z(i, j) = 0 iff P (i, j) = 0, 1 ≤ i, j ≤ n.(3)

In Equation 1, g(Z) is a cost function that encodes the cost

of making the perturbation to model parameters — a typical

function is the sum of squares of the perturbation variables, i.e.,

g(Z) = ||Z||F = v21 + . . .+ v2n, where ||Z||F is the Frobenius

norm of the Z matrix. Equation 2 checks if the modified

model MP∗ (with s0 as its initial state) satisfies property φ.

Equation 3 forces that no transitions are added or dropped in

MP∗ w.r.t. MP , only the transition probabilities are modified.

This condition ensures that Z does not change the structure or

stochasticity of the underlying probabilistic model. The main

bottleneck in the Model Repair formulation in Equations 1-3

is the constraint in Equation 2 — if it is a temporal logic

constraint, it will be difficult to directly handle it in a non-

linear optimization problem. Proposition 2 shows how we can

transform the above optimization problem with a “non-standard”

temporal logic constraint to a standard non-linear optimization

problem with non-linear constraints.

Proposition 2. Consider a probabilistic model M and a

probabilistic temporal logic formula φ. If M is a parametric

Markov Chain (MC) or parametric Markov Decision Process

(MDP) and φ is expressed in Probabilistic Computational Tree

Logic (PCTL), then the ModelRepair problem, specified in

Definition 1 and Equations 1-3, can be reduced to an equivalent

set of nonlinear optimization problems with non-linear rational

constraints. (Proof sketch in supplementary material.)

As outlined in Proposition 2, if M is a discrete time Markov

Chain (DTMC) or MDP, parametric model checking can convert

Equations 1-3 to this constrained optimization problem:

min g(v), (4)

s.t. f(v) ∼ b, (5)

∀vk ∈ v : 0 < vk + P (i, j) < 1. (6)

where P (i, j) in Equation 6 corresponds to Z(i, j) matrix

entries that have non-zero value vk. This reparameterization

of Equation 2, encoding the satisfiability of φ in M to the

non-linear equation f(v) in Equation 5, can be obtained using

a parametric model checker, e.g., PRISM [17]. Solving the

nonlinear objective function in Equation 4 with the non-linear

constraints in Equation 5-6 would give us a “local optimum”

of Z that transforms M to M∗ — we can do that using a

non-linear optimization tool, e.g., AMPL [8]. If the nonlinear

optimization problem has a feasible solution, it gives us the

optimal values of Z that makes the resulting model M∗ satisfy

the constraints φ.

B. Data Repair

In some cases, we try to modify the dataset D to D′ so that

the model trained on D′ satisfies φ. For this, we need to solve

the Data Repair problem (Definition 3) – a variant of machine

teaching [33]. Based on the machine teaching formulation [21],

the Data Repair problem can be formalized as:

arg min
D′,Θ∗

ET (D,D′) (7)

s.t. MΘ∗ |= φ (8)

Θ∗ ∈ argmin
Θ

[RL(D
′,Θ) + λΩ(Θ)], (9)

s.t., g(Θ) ≤ 0, h(Θ) = 0. (10)

Here, the inner optimization models the standard machine

learning objective of regularized empirical risk minimization,

consisting of the empirical risk function RL and the regularizer

Ω. ET is the teaching “effort” function of modifying the dataset

D to D′, MΘ∗ indicates a model that is parameterized by Θ∗,

while g and h are other domain constraints.

Let us consider that the dataset D is transformed to D′

using a data perturbation vector p, where entries of p are 0

or 1. In this paper, we consider that a subset of data points

need to be dropped from D for the resulting trained model

to satisfy φ (e.g., those points could have noisy features or

labels). So, each datapoint di in D is multiplied by pi, where

pi = 0 indicates that the point is dropped — in this case,

p = {p1 . . . pn}, where n = |D|. Also, let us consider that

the effort function is characterized by the magnitude of the

data perturbation, i.e., ET (D,D′) = |D| − ||p||2. Using these

transforms, Equations 7-10 can be reformulated as:

arg min
p,Θ∗

|D| − ||p||2 (11)

s.t. MΘ∗ |= φ, (12)

Θ∗ ∈ argmin
Θ

[R′
L(D, p,Θ) + λΩ(Θ)], (13)

s.t., g(Θ) ≤ 0, h(Θ) = 0. (14)

Note that R′
L(D, p,Θ) is a reparameterization of RL(D

′,Θ),
where we use the fact that D′ is obtained by perturbing D
using p. This formulation of Data Repair can handle the case

where we want certain pi values to be 1, i.e., the case where

we want to keep certain data points because we know they

are reliable. Proposition 3 shows how we can solve the Data

Repair problem.

Proposition 3. Let us consider a probabilistic model M and

a probabilistic temporal logic formula φ. If M is a parametric

Markov Chain (MC) or parametric Markov Decision Process

(MDP) and φ is expressed in Probabilistic Computational Tree

Logic (PCTL), then the DataRepair problem in Definition 3,

characterized by Equations 11-14, can be reduced to a set

of non-linear optimization problems with non-linear rational

constraints. (Proof sketch in supplementary material.)
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As outlined in Proposition 3, to solve the non-linear optimiza-

tion formulation in Equations 11-14, we first solve the inner

optimization in Equations 13-14 using maximum likelihood

— this gives us a DTMC model M(p), where the transition

probabilities are rational functions of the data perturbation

vector p. The outer optimization in Equations 11-12 can then

be reformulated as:

argmax
p

||p||2 s.t.Mp |= φ. (15)

This can be solved by using symbolic analysis, specifically

parametric model checking, in combination with non-linear

optimization. In this case, we are considering data points being

removed — we can come up with similar formulations when

we consider data points being added or replaced.

C. Reward Repair

The problem of learning reward function in MDPs from

data is considered to be the Inverse Reinforcement Learn-

ing (IRL) [34] problem. We will consider the probabilistic

model [34], where the probability of a trajectory is proportional

to the exponential of the total reward along the trajectory in the

MDP multiplied with the probability of the transitions along

that MDP trajectory:

P (U |Θ, P ) =
1

Z(Θ)
exp(

∑

i

(ΘT fsi)).
∏

i

P (si+1|si, ai) (16)

where s are the states, a are the actions, U =
(s1, a1) . . . (sn, an) is a trajectory of state action pair sequences,

i is the index along the path/trajectory, P is the transition

distribution of the MDP, and PP (U) is the probability of

observing the transitions in the trajectory U in the MDP.

Additionally, f is a feature vector defined over each state, Θ is a

weight vector, and the reward in a state is assumed to be a linear

function of the features of that state, i.e., reward(fU ) = ΘT fU ,

where ||Θ||2 ≤ 1.

In order to learn the reward function, we have to learn Θ
(assuming f is known). Given a trace U , we maximize the log

likelihood L = P (U |Θ) using the probability formulation

given above, i.e., we find: Θ∗ = P (U |Θ), which gives

the optimal reward. In the Reward Repair formulation, we

additionally enforce that a given set of rules are satisfied

along with likelihood maximization, i.e., we enforce that [13]:

EQ[φl,gl(U)] = 1, where gl is the grounding of l-th rule φl(U).
The rules φ are defined over the trajectory, and hence can be

in any logic that can be interpreted over a trajectory, such as

propositional, first-order, or linear temporal logic.

Q is the projection of P using updated reward function R′

that satisfies the rule φl (where R′ has the same state features

f but a different weight vector Θ). We will use the projection

approach [13] to project the MDP probability P to the subspace

that enforces the satisfaction of the given rules to get Q. This

will involve solving the following optimization problem:

arg min
Q,ζ

KL(Q||P ) + C||ζ||1 (17)

s.t. λl[1− EQ[φl,gl(U)]] ≤ ζl, ζl ≥ 0, l = 1 . . . L(18)

where the constraint enforces satisfaction of the rules, KL

divergence minimizes the amount of difference between Q
(defined over corrected reward R′) and P (defined over optimal

reward R∗) caused by correcting the optimal reward function

R∗ to R′, λl and ζl are the importance weight and slack

variable associated with satisfying the lth rule, and C is the

regularization parameter. Proposition 3 shows how we can

solve the Reward Repair problem.

Proposition 4. Consider a MDP M and a formula φ
in propositional, first order or linear temporal logic. The

RewardRepair problem in Definition 2, characterized

by Equations 17-18, is optimized by choosing Q(U) =
1

Z
P (U) exp(−

∑
l,gl

λl[1− φl,gl(U)]).

Equation 17 follows from the Posterior Regularizer formula-

tion (Proposition 2.1 in [9]) and gives us the path probabilities

Q using the corrected reward function R′. Note that this repair

is intuitive. If for a set of groundings the rules are satisfied, then

the argument of the exponent is 0. Hence, the corresponding

Q for the path U is same as P . If the groundings do not

satisfy a formula, then for large values of λl the argument of

the exponent is −∞ and consequently, the probability of that

path is 0. Once we have the repaired Q function, we use it to

estimate R′ by using the trajectory probabilities corresponding

to every transition in the model. For propositional rules φ,

the groundings are provided by the values of the states and

actions in the traces. For first order logic rules φ, we will have

to consider groundings based on all possible trajectories U
drawn from the MDP — this can be approximated by samples

of trajectories drawn from the MDP using Gibbs sampling.

For linear temporal logic, we pass the constraints through a

parametric model checker like PRISM — that gives us the set

of propositionalized constraints, which can then be used to

estimate Q.

V. CASE STUDIES

We outline two case studies —- Model/Data Repair in a

MDP controller for query routing in a wireless sensor network,

and Reward Repair in a MDP for automatic car control.

A. Query Routing Controller in Wireless Sensor Network:

Model and Data Repair

We consider a wireless sensor network (WSN) arranged in

a n× n grid topology (in our case-study n = 3). The n = 3
row corresponds to “field” nodes that are closer to the field

of deployment, while n = 1 corresponds to “station” nodes

that are closer to the base station — the goal is to route any

message originating from a node to n11 via peer-to-peer routing

in the minimum number of attempts, so that n11 can forward

the message directly to the base station hub [10]. We model

the network as a Markov Decision Process (MDP). Different

node MDPs are connected through shared actions, e.g., the

MDPs of nodes n21 and n22 are connected through the shared

action f11_22 of forwarding a message from node n22 to node

n11. A node has a fixed probability f of forwarding a message

to a neighboring node in the network, and a node-dependent

probability of ignoring the message. A node can be in one
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of 3 states — (a) S = 0: on being forwarded a message, the

node has decided to ignore the message; (b) S = 1: node has

not ignored the message and is considering whether or not

to forward it; (c) S = 2: node has forwarded the message.

On the action of message forwarding from a neighbor, a node

processes and forwards it to its neighbors probabilistically.

���
���
���
���

���
���
���
���

S0 S1 S3 S4

S5 S6 S7 S8 S9

S10

S10

S10
S1

Action 1

Action 2

Action 0

S2

Fig. 1. Car safely overtaking a van: states S0-S10 and possible actions for
states S0-S3 and S5-S9. S4 is target sink state, S10 is unsafe sink state, S2 is
unsafe state (collision with van).

1) Model Repair in Wireless Sensor Network: The reward

function of the WSN MDP is used to estimate the number of

forwarding attempts to route a message from one end of the

network to another. We assume that the reward corresponding

to every forward attempt is 1.0 — the total reward counts the

number of forwarding attempts necessary to route the message

across the network. The structure of the MDP is decided by

the grid structure of the network. The transition probabilities

in the MDP model are learned using maximum likelihood

estimation from message routing traces. We work through 3

different cases — in each case, we assume that the message

(i.e., query) is initiated at the field node n33, and the goal

is to get the message to the station node n11. In each case,

we check if the learned MDP model satisfies the property

R{attempts} ≤ X[F Sn11
= 2], where R{attempts} is

the cumulative reward function value for message forwarding

attempts, and X indicates a particular number of message

forwarding attempts.

Model satisfies property: Consider X = 100, i.e., we

want to ensure that the MDP model can route a message from

field node n33 to station node n11 under 100 attempts. PRISM

indicates that the initial MDP model satisfies this property

without any modifications.

Model Repair gives feasible solution: Consider X = 40:

the original MDP model does not satisfy this property. We

subsequently run parametric model checking of the model with

the two parameters p and q, which are correction variables

added to the ignore probabilities of field/station nodes and other

nodes respectively (which are considered controllable in this

formulation), and plug in the resulting non-linear equation

into AMPL to get the solution p = −0.045, q = −0.04.

So, the property is satisfied by the model if the node ignore

probabilities are lowered, since in this case there is a higher

chance of a node forwarding a message and hence the number

of routing attempts is less.

Model Repair gives infeasible solution: Consider X =
19: in this case parametric model checking and non-linear

optimization states this to be a “infeasible problem”, which

indicates that Model Repair cannot perturb the model in order

to satisfy the property.
2) Data Repair in Wireless Sensor Network: We consider

data traces of message forwarding and traces of query dropping

(ignoring) in n11 and a node near the message source, viz.,

n32. Let us consider that 40% of the traces involving message

forwarding have a successful forward, while 60% do not. If we

assign probabilities p1 and p2 of dropping those 2 trace types

respectively, we get that the maximum likelihood forwarding

probability = 0.4/(0.4 + 0.6p), where p = p2/p1. Using a

similar approach, we get that the ignore probabilities for n11 =
0.5/(0.5+ 0.5q), and for node n32 = 0.5/(0.5+ 0.5r). When

we run parametric model checking in PRISM for the model

with these Data Repair transition values, we get a non-linear

equation for the property R{attempts} ≤ 19[F Sn11
= 2],

which are solved in AMPL to get the values p = 0.00001, q =
18.8129, r = 18.813 — with these data corrections, the model

learned on the corrected data satisfies the property.

B. Obstacle Avoidance Controller in Autonomous Vehicle:

Reward Repair

In this example, we consider a scenario where a car needs

to avoid an obstacle by switching to left lane and eventually

return back to the right lane at a safe distance ahead of the

van. Figure 1 illustrates the scenario. The current location of

the car is S0. The states S0-S4 correspond to the right lane

and S5-S9 correspond to left lane. The state S2 corresponds

to collision with the obstacle, and hence it is unsafe. The state

S10 corresponds to going off road or not returning to the right

lane by S4, and hence S4 is also marked as unsafe. Each

state in S0-S3 and S5-S9 has three possible actions: action

0 corresponds to moving forward, action 1 corresponds to

changing lane to left and action 2 corresponds to changing

lane to right. Once the car reaches state the unsafe state S10,

it remains there. The state S4 is a sink state since it marks the

end of the maneuver.

We can represent each state using three features: φ1

corresponding to the lane to which the state belongs, φ2

corresponding to the distance from the nearest unsafe state

and φ3 corresponding to whether the state is the target

sink state S4. We are given the following expert policy:

(S0, 0),(S1,1),(S6,0),(S7,0),(S8,2),(S3,0),(S4,0). Using max

entropy inverse reinforcement learning, we learn the reward:

reward(Si) = 0.38φ1(Si) + 0.29φ2(Si) + 1.21φ3(Si). The

corresponding optimum deterministic policy is: (S0, 1),

(S1, 0), (S2, 0), (S3, 0), (S4, 0), (S5,0), (S6, 0), (S7, 0),

(S8, 0), (S9, 2), (S10, 0). This policy is unsafe since the

action 0 in state S1 would lead the car to state S2, that

is, collide with the van. Next, we try to repair the reward

function to eliminate reaching the unsafe state S2. In order

to do so, we solve the following optimization problem

where Q is the state-action value function corresponding

to the reward: min |θ∗ − θ|, s.t., Q(S1, 1) > Q(S1, 0).
We obtain the corresponding repaired reward functions

as: reward(Si) = 0.38φ1(Si) + 0.39φ2(Si) +
1.21φ3(Si). The corresponding optimal policy is:

(S0, 1), (S1, 1), (S2, 0), (S3, 0), (S4, 0), (S5, 0), (S6, 0),
(S7, 0), (S8, 2), (S9, 2), (S10, 0). This policy avoids going to

unsafe states — the repaired reward function ensures safety.
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VI. RELATED WORK

Machine learning (ML) has a rich history of learning

under constraints [6], [22] — different types of constrained

learning algorithms have been proposed. Propositional con-

straints on size [3], monotonicity [16], time and ordering [18],

probabilities [25], etc. have been incorporated into learning

algorithms using constrained optimization [5] or constraint

programming [28], while first order logic constraints have also

been introduced into ML models [20], [29]. However, to the

best of our knowledge, temporal logic constraints have not

been incorporated into ML models before. There has been work

on training models that capture dynamical/temporal behavior,

e.g., DBNs [23], LSTMs [12], and also efforts in learning

temporal logic relations [7], [19]. Sadigh et al. [30] study

the problem of human driver behavior using Convex Markov

Chains, and show how we can verify PCTL properties for

these models. [26] show how Convex MDPs can be modified

to satisfy PCTL formulas. However, these methods follow

techniques different from Model and Data Repair. We would

also like to explore connections between TML and probabilistic

CEGAR and CEGIS algorithms [11].

The closest related work to Reward Repair is reward

shaping – that’s the formulation where intermediate rewards

are specified for subgoals, to help the MDP learn reward

functions for a complex task while keeping the optimal policy

unchanged [24]. Reward shaping has been shown to be related

to Q-value initialization [32], and is also a way to incorporate

background knowledge into model-free RL algorithms for

MDP [2]. The reward shaping work provides direct suggestions

about the reward function to the model. In contrast, the Reward

Repair formulation enforces that certain domain-level logical

constraints are satisfied by the RL algorithm. Another related

work is Constrained Policy Optimization [1] — this is defined

over Constrained Markov Decision Processes, where constraints

are defined on expectations of auxilliary costs (as compared

to our formulation, which can handle logical constraints).

VII. CONCLUSIONS AND FUTURE WORK

We have developed TML techniques of Model Repair, Data

Repair and Reward Repair in MDP models, which ensure

that the repaired models satisfy specified logical properties.

In this paper, we focused on MDPs since they are commonly

used to model controllers. Other types of dynamic models

(e.g., probabilistic timed automata) can also be handled by our

approach. For other probabilistic models that have hidden states

(e.g., Hidden Markov Models, Dynamic Bayes Nets), we can

incorporate the temporal constraints into the E-step of an EM

algorithm for parameter learning. In the future, we would also

like o extend TML to other types of logical properties (e.g.,

Linear Temporal Logic), other mission-critical domains (e.g.,

cyber security), and non-probabilistic models (e.g., SVM). We

will also focus on more scalable repair algorithms, e.g., using

efficient localized changes, or as the underlying verification

techniques and optimization procedures improve with time.
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