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Abstract
We propose a novel passive learning approach, TeLex, to infer signal temporal logic (STL)
formulas that characterize the behavior of a dynamical system using only observed signal
traces of the system. First, we present a template-driven learning approach that requires two
inputs: a set of observed traces and a template STL formula. The unknown parameters in
the template can include time-bounds of the temporal operators, as well as the thresholds
in the inequality predicates. TeLEx finds the value of the unknown parameters such that
the synthesized STL property is satisfied by all the provided traces and it is tight. This
requirement of tightness is essential to generating interesting properties when only positive
examples are provided and there is no option to actively query the dynamical system to
discover the boundaries of legal behavior. We propose a novel quantitative semantics for
satisfaction of STL properties which enables TeLEx to learn tight STL properties without
multidimensional optimization. The proposed new metric is also smooth. This is critical to
enable the use of gradient-based numerical optimization engines and it produces a 30x to
100x speed-upwith respect to the state-of-art gradient-free optimization. Second,wepresent a
novel technique for automatically learning the structure of the STL formula by incrementally
constructing more complex formula guided by the robustness metric of subformula. We
demonstrate the effectiveness of the overall approach for learning STL formulas from only
positive examples on a set of synthetic and real-world benchmarks.

Keywords Signal temporal logic · Specification mining · Transparent machine learning ·
Interpretable machine learning · Cyber-physical system · Autonomous system

1 Introduction

Signal Temporal Logic (STL) [30] is a discrete linear time temporal logic used to reason
about the future evolution of a continuous time behavior. Generally, this formalism is useful
in describing the behaviors of trajectories of differential equations or hybrid models. Several
approaches [16,22,23,29,37,38] have been recently proposed to automatically design sys-
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tems and controllers to satisfy given temporal logic specifications. But practical systems are
still often created as an assembly of components—some of which are manually designed.
Further, many practical systems also include the physical plant, and the overall property
of such systems are not known a-priori. Consequently, specification mining has emerged
as an effective approach to create abstractions of monitored behavior to better understand
complex systems, particularly in autonomy and robotics. STL is a natural choice for mining
these specifications. In this paper, we use bounded-time variant of STL where all tempo-
ral operators are associated with lower and upper time-bounds. The truth of formulas in
bounded-time STL can be assessed using only finite length trajectories. Our goal is to mine
specifications by observing a system for a finite time and hence, bounded-time STL is a
suitable target.

Existing approaches to learning STL properties fall into two categories. The approaches in
the first category are classifier-learning techniques which rely on the presence of both positive
and negative examples to learn STL formula as a classifier. The approaches in the second
category are active-learning approaches that require the capability to experiment with the
system to actively try falsifying candidate STL properties in order to obtain counterexamples.
In this paper, we address the problem of learning STL properties where negative examples are
not provided and it is not possible to actively experiment with the system in a safe manner.
For example, learning properties of a vehicle-deployed autonomous driving system must
rely on only positive examples. We neither have easy access to negative example trajectories
that the system will never execute nor have an easy way to design safe experiments for
falsifying properties. The boundary of legal behavior needs to be inferred using only positive
examples.

We propose a novel technique, TeLEx that addresses this challenge of data-driven learn-
ing of STL formulas from just positive example trajectories. An initial learning bias is
provided to TeLEx as a template formula. TeLEx is restricted to learning parameters
of the provided template STL formula and not its structure. TeLEx does not have access to
either negative examples or the model of the system for falsification. Thus, the boundaries
of legal behavior are not directly available. It has to be inferred just from positive examples.
The challenge is to avoid over-generalization in absence of negative examples or counterex-
amples obtained from active falsification. TeLEx addresses this research gap of mining
temporal specifications of systems where active experimentation is not possible and failing
traces (negative examples) are not available.

Learning from just positive examples has been studied in machine learning [9,24,28,32,
34,42] in different contexts such as learning geometric shapes, logic programs and recursive
languages. These approaches often employ some metric that characterizes the complex-
ity/simplicity of the concepts to avoid over-generalization. They use this metric to find the
simplest concept consistent with the positive examples. For example, an approach for learn-
ing convex polytopes from positive examples, would find the tightest convex hull of the
given examples. To the best of our knowledge, TeLEx is the first approach to learn signal
temporal logic properties from just positive examples. We use a novel quantitative metric
to define how tightly an STL formula is satisfied by a set of positive examples. Based on
this metric, TeLEx infers the tightest STL property consistent with the provided example
traces.

Quantitative satisfiability metrics for STL properties have been previously proposed in
literature. These metric capture robustness or average-robustness of satisfiability of an STL
formulae over trajectories. These metrics do not capture the tightness of satisfiability. TeLEx
uses a novel quantitative metric that measures the tightness of satisfiability of STL formulas
over the traces. This metric uses smooth functions to represent predicates and temporal oper-
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ators. This keeps the metric differentiable, which would not be possible by just taking the
absolute value of standard robustness-metric or directly using the qualitative metric. While
sigmoid and exponential-like functions are often used in fields such as deep-learning which
rely on numerical-optimization, TeLEx is the first to use these to smoothly represent tight-
satisfiability of STL formulas. The smoothness of the proposedmetric allows the effective use
of gradient-based numerical optimization techniques. This improves scalability compared to
gradient-free optimization techniques traditionally used for STL learning. TeLEx can be
used with a number of different numerical optimization back-ends to synthesize parameters
that minimize the new metric over positive examples, and thus, learn a tight STL formula
consistent with all the traces.

This paper is an extended version of our previous work [25]. The technical extensions
include automatically learning structure of the STL formula and an extended experimental
evaluation that compares the proposed approach against state of the art techniques that use
genetic algorithms for learning formula structure. The overall technical contributions of the
paper are as follows:
– Wepropose a newquantitative tightnessmetric formeasuring how tightly an STL formula

is satisfied by a trajectory. This metric is negative when the formula is not satisfied and
positive when the formula is satisfied. The metric peaks when the STL formula is just
satisfied by the trajectory.

– We present a technique to efficiently learn parametric STL from positive examples and an
STL template, using gradient descent methods by exploiting the smoothness of proposed
tightness metric.

– We propose a novel approach to automatically learn structure of the STL by incrementally
constructing more complex STL formula guided by the robustness metric of satisfiability
until a tight fitting STL formula is learned.

– We evaluate the proposed STL on a set of synthetic and real-world benchmarks.

The rest of the paper is organized as follows. We briefly summarize the background on
STL and its quantitative semantics given by a robustnessmetric in Sect. 2.We discuss relevant
related work on learning temporal logic properties, quantitative metrics for satisfiability of
STL and machine learning literature on learning from positive examples in Sect. 3, and
contrast them with the approach proposed in this paper. We present the new tightness metric
to learn STL formulas from positive examples in Sect. 4 along with the overall gradient-
based approach for learning parameterized STL formulas. We also present a novel approach
to automatically learn structure of the STL formulas in Sect. 5. We discuss the experimental
results in Sect. 6 and conclude in Sect. 7.

2 Preliminaries

We present some preliminary concepts and definitions used in our work.We begin by review-
ing interval arithmetic which will be used in defining the semantics of STL.

Definition 1 An interval I is a convex subset ofR. A singular interval [a, a] contains exactly
one point and ∅ denotes empty interval. Let I = [a, b], I1 = [a1, b1], and I2 = [a2, b2] be
three closed intervals. Then,

1. −I = [−b,−a]
2. c + I = [c + a, c + b]
3. I1 ⊕ I2 = [a1 + a2, b1 + b2]
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4. min(I1, I2) = [min(a1, a2),min(b1, b2)]
5. I1 ∩ I2 = [max(a1, a2),min(b1, b2)] if max(a1, a2) ≤ min(b1, b2) and ∅ o.w.

These definitions for various operations are naturally extended to closed, open-closed,
and closed-open intervals.

Definition 2 A time domain ST is a finite or infinite set of time instants such that ST ⊆ R
≥0

with 0 ∈ ST . A signal or signal-trace τ is a function from ST to a domain X ⊆ R. We
assume the domain of all signals to be R to simplify notation. We also refer to signal-trace
as simply trace or trajectory.

Monitors used in cyber-physical systems, as well as simulation frameworks, typically
provide signal values at discrete time instants due to discrete sampling, or due to limitations
of numerical integration techniques. The actual signal can be reconstructed fromdiscrete-time
samples using some form of interpolation. In this paper, we assume constant interpolation to
reconstruct the signal τ(t), that is, given a sequence of time-value pairs (t0, x0), . . . , (tn, xn),
for all t ∈ [t0, tn), we define τ(t) = xi if t ∈ [ti , ti+1), and τ(tn) = xn .

The signal temporal logic (STL) formula are used to describe properties of signals. The
syntax of STL is given as follows:

Definition 3 A formula φ ∈ F of bounded-time STL is defined as follows:

φ := ⊥ | 
 | μ | ¬φ | φ ∨ φ | φ ∧ φ | φU[t1,t2]φ | F[t1,t2]φ | G[t1,t2]φ

where 0 ≤ t1 < t2 < ∞ and the atomic predicates μ : Rn → {
,⊥} are inequalities on a
set X of n signals, that is, μ(X) is of the form g(X) ≥ α, where α ∈ R and g : Rn → R is a
continuous function.

The eventually F and globally G operators are shorthands for 
U[t1,t2]φ and
¬(
U[t1,t2]¬φ) respectively. We keep them, nonetheless, to aid clarity when presenting the
different ways of assigning semantics to these operators. We refer to [12,30], and the survey
in [31], for detailed discussion on STL.

We briefly summarize its qualitative semantics in Definition 4.
Let T denote the set of all signal-traces.

Definition 4 The qualitative semantics of STL formulas is given by the function ψ : F ×
T × ST → Bool that maps an STL formula φ, a given signal-trace τ ∈ T , and a time
t ∈ ST to a Boolean value (True 
, or False ⊥) such that

– ψ(
, τ, t) = 

– ψ(μ, τ, t) = μ(τ(t))
– ψ(¬φ, τ, t) = ¬ψ(φ, τ, t)
– ψ(φ1 ∨ φ2, τ, t) = ψ(φ1, τ, t) ∨ ψ(φ2, τ, t))
– ψ(φ1 ∧ φ2, τ, t) = ψ(φ1, τ, t) ∧ ψ(φ2, τ, t))
– ψ(F[t1,t2]φ, τ, t) = ∃t ′ ∈ [t + t1, t + t2] ψ(φ, τ, t ′)
– ψ(G[t1,t2]φ, τ, t) = ∀t ′ ∈ [t + t1, t + t2] ψ(φ, τ, t ′)
– ψ(φ1U[t1,t2]φ2, τ, t) = ∃t ′ ∈ [t + t1, t + t2] (ψ(φ2, τ, t ′) ∧ ∀t ′′ ∈ [t, t ′) ψ(φ1, τ, t ′′))

Motivated by the need to define how robustly a trace satisfies a formula, formulas in STL
were given a quantitative semantics, where formulas are interpreted over numbers such that
positive numbers indicate that the formula is True, and negative numbers indicate falsehood.
We summarize the quantitative semantics (robustness metric) from [13,15] below.
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Definition 5 The robustness metric ρ maps an STL formula φ ∈ F , a signal trace τ ∈ T ,
and a time t ∈ ST to a real value, that is, ρ : F × T × ST → R ∪ {∞,−∞} such that:
– ρ(
, τ, t) = +∞
– ρ(μ, τ, t) = g(τ (t)) − α where μ(X) is g(X) ≥ α

– ρ(¬φ, τ, t) = −ρ(φ, τ, t)
– ρ(φ1 ∨ φ2, τ, t) = max(ρ(φ1, τ, t), ρ(φ2, τ, t))
– ρ(φ1 ∧ φ2, τ, t) = min(ρ(φ1, τ, t), ρ(φ2, τ, t))
– ρ(F[t1,t2]φ, τ, t) = sup

t ′∈[t+t1,t+t2]
ρ(φ, τ, t ′)

– ρ(G[t1,t2]φ, τ, t) = inf
t ′∈[t+t1,t+t2]

ρ(φ, τ, t ′)

– ρ(φ1U[t1,t2]φ2, τ, t) = sup
t ′∈[t+t1,t+t2]

(min(ρ(φ2, τ, t
′), inf

t ′′∈[t,t ′)
ρ(φ1, τ, t

′′)))

A STL formula φ is satisfied by a trace τ at time t , that is, ψ(φ, τ, t) = 
 if and only if
ρ(φ, τ, t) ≥ 0. Intuitively,

ρ quantifies the degree of satisfiability. A large positive value indicates that the formula
φ is robustly satisfied by the trace τ at time t , a positive value close to zero suggests that
τ(t) satisfies φ but it is close to violating φ, and a negative value indicates that the formula
φ is violated by τ(t). This has motivated its use in learning STL formulae for specification
mining [7,13,20,26], diagnosis [27], falsification [1,2,6], and system synthesis [4,11,38].

We also define a complexity measure χ for STL formula which is used in searching
for incrementally more complex STL formulas which discovering the formula structure.
Intuitively, the complexity measure captures the level of temporal nesting in an STL formula.

Definition 6 The complexity measure χ maps an STL formula φ ∈ F to a non-negative
integer value, that is, χ : F → Z+ such that:

– χ(
) = 0, χ(μ) = 0 where μ(X) is g(X) ≥ α

– χ(¬φ) = 1 + χ(φ)

– χ(φ1 ∨ φ2) = χ(φ1) + χ(φ2), χ(φ1 ∧ φ2) = χ(φ1) + χ(φ2)

– χ(F[t1,t2]φ) = 1 + χ(φ), χ(G[t1,t2]φ) = 1 + χ(φ)

– χ(φ1U[t1,t2]φ2) = χ(φ2) + χ(φ1)

Finally, we define the duration of a bounded-time STL formula which intuitively cor-
responds to the period of time required to evaluate the truth of the formula over a given
trajectory.

Definition 7 The duration Δ maps an STL formula φ ∈ F to a non-negative real value, that
is, Δ : F → R such that:

– Δ(
) = 0,Δ(μ) = 0whereμ(X)isg(X) ≥ αΔ(¬φ) = 0
– Δ(φ1 ∨ φ2) = max(Δ(φ1),Δ(φ2))

– Δ(φ1 ∧ φ2) = max(Δ(φ1),Δ(φ2))

– Δ(F[t1,t2]φ) = (t2 − t1) + Δ(φ)

– Δ(G[t1,t2]φ) = (t2 − t1) + Δ(φ)

– Δ(φ1U[t1,t2]φ2) = (t2 − t1) + max(Δ(φ2) + Δ(φ1))

3 Related work

In this section, we summarize related work on learning STL formulas and contrast them to
the approach presented in this paper. We categorize related work into three groups: learning
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STL formula, quantitative metrics for temporal logic and learning concepts from positive
examples.

3.1 Learning STL formula

Existing techniques for learning STL formulas can be broadly classified into active and pas-
sive methods. Active STL learning methods rely on availability of a simulation model on
which candidate temporal properties can be falsified [1,3,6,41]. This generates counterex-
amples. Since these models are often complex executable models, black-box optimization
techniques such as simulated annealing are used in falsification of candidate temporal logic
properties. If the falsification succeeds, the incorrect parameter values are eliminated and the
obtained negative example is used in the next iteration of inferring new candidate parame-
ters values of the temporal logic property. We address a different problem of learning signal
temporal logic formula when the simulation model is not available. Further, instead of using
gradient-free optimization methods such as simulated annealing,Monte Carlo and ant colony
optimization to falsify models, we use more scalable gradient-based numerical optimization
methods to infer tightest STL property consistent with a given set of traces. Gradient-based
methods for falsification [2] have also been proposed recently to exploit the differentiable
nature of simulation models but our approach does not have access to a simulation model.
Instead, we define a smooth tightness metric for satisfiability of STL properties, and use
gradient-based methods to search over the parameter space of STL formulae. [35] presents a
smoothness metric that usesMeyer wavelet expansion. In contrast, we use custom smoothen-
ing functions in defining the tightness metric.

Passive data driven approaches for learning parametric STL formula from positive and
negative example traces have also been proposed in literature. Learning STL formula is
reduced to a two class supervised classification problem [7,17,27] that is solved using a mix-
ture of discrete and continuous optimization using decisions trees and simulated annealing.
A model based approach that relies on statistical induction of models before learning STL
formulae is presented in [7]. In contrast, TeLEx addresses the problem of passive learning
of STL formulae in presence of only positive examples.

Learning the structure of STL formula [7,8,17,27] along with parameters using a dataset
comprising of positive and negative examples, has also been studied in literature. Typically,
the problem is addressed in two steps, learning the structure followed by the synthesis of
parameters. The structure of the STL formula in [27] is learned by exploring a directed acyclic
graph. In [17], a decision tree approach is used to learn both the structure and the parameters.
Genetic algorithms have also been used to synthesize the STL formula structure [7,8]. In
contrast to these approaches, this paper focuses on learning STL formula using a dataset
of only positive examples and hence, decision-tree based approaches or those using fitness
functions for genetic algorithm corresponding to the accuracy of separating positive and
negative examples, are not applicable. Our approach to learn the structure of STL formula is
the first to exploit robustness metric to incrementally construct more complex STL formula.

3.2 Metrics for STL satisfiability

Signal temporal logic was introduced [13,30] within the context of monitoring temporal
properties of signals. It is possible to quantify the degree of satisfiability of an STL property
on a signal trace, thus going beyond the Boolean interpretation. Robustness metric was
proposed [13,15] to provide such a quantitative metric, as described in Sect. 2. Intuitively,
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this metric captures the closest distance between the signal trace and the boundary of set of
signals satisfying the STL property. This is the worst-case measure of degree of satisfiability.
More recently, an average robustnessmetric has also been proposed [29] in the context of task
and motion planning application where the min (inf) operator in the metric definition for
globally properties is replaced by an averaging operator. This allows more efficient encoding
to linear programs for certain planning problems. These metrics are monotonic, that is, the
measure is higher for formulas that are more robustly satisfiable.

If we use robustness metric to learn STL properties from a set of positive example traces,
then we would learn very weak properties.

This is because a weaker STL property would have a higher robustness value for any
given set of positive example signal traces. For example, even if G(x > 0) holds for a given
set of traces, the formula G(x > −100) holds more robustly, and would be preferred if we
optimized for the standard robustness metric.

Hence, in this paper, we define a new metric that captures tight satisfiability of an STL
property over positive example traces.

A possible approach for finding a tight formula would be to seek a formula that minimizes
the absolute-value of the robustness-metric. However, this is not ideal because the absolute-
value function is non-differentiable at the optimumandhence, optimizing such ametricwould
be very challenging. Our proposed novel metric uses smooth functions, such as sigmoid
and exponentials, to model tight-satisfiability while still retaining differentiability to aid
optimization.

3.3 Learning from positive examples

Learning from positive examples has been investigated extensively inmachine learning. Gold
et al [18] showed that even learning regular languages from a class with at least one infinite
language is not possible with only positive examples in a deterministic setting. Horining [19]
considered the case of stochastic context-free grammars and assumed that the positive exam-
ples were generated by sampling from the unknown grammar according to the probabilities
assigned to the productions. He proved that such positive examples could be used to con-
verge to the correct grammar in the limit with probability one. Angluin [5] generalized these
results to identifying any unknown formal language in the limit with probability one as long
as positive examples are drawn according to an associated probability distribution. Apart
from the literature on language learning,

Muggleton [33] showed that logic programs are learnable with arbitrarily low expected
error just from positive examples within a Bayesian framework.

Valiant [40] showedmonomials and k-CNF formulas are ProbablyApproximately Correct
(PAC) learnable using only positive examples. While learning from positive examples and
its limitations have been studied for other concept classes [24], our approach is the first to
consider learning STL properties from positive examples.

4 Learning parameters of STL template

Before we present the proposed approach for learning STL properties from just positive
examples, we present a simple motivating example.

123



Formal Methods in System Design

4.1 Illustrative example

Let us consider an autonomous vehicle system where the steering angle ang and speed
spd are being observed. Each element of the observed trace is a tuple of the form
(timestamp,ang,spd). We would like to learn an STL property with the template:

φ = |ang| ≥ 0.2 ⇒ F[0,6]spd ≤ α

which intuitively means that we would like to learn the minimum speed α reached within 6 s
of initiating a turn. Let us consider a timestamped signal trace:

τ = (0, 0.1, 15), (2, 0.2, 14), (4, 0.3, 12), (6, 0.35, 10), (8, 0.4, 8), . . .

For this trace, we notice that

(|ang| ≥ 0.2 ⇒ F[0,6]spd ≤ 8)

would tightly fit the data. But if we used the robustness metric for optimization, increasing
the value of α would be preferred since it increases the robustness value. The robustness
metric value for the instantiated template φ and the trajectory τ is ρ(φ, τ, 0) = 0 when
α = 8, ρ(φ, τ, 0) = 2 when α = 10, ρ(φ, τ, 0) = 992 when α = 1000, and so on. A weaker
property such as

|ang| ≥ 0.2 ⇒ F[0,6]spd ≤ 1000

has higher robustness score than the tight property

|ang| ≥ 0.2 ⇒ F[0,6]spd ≤ 8

but clearly, the latter is a more fitting description of the observed behavior.

4.2 Problem definition

We next present some definitions essential to formulating the problem of learning STL
properties from positive examples.

Definition 8 A template STL formula φ(p1, p2, . . . , pk) with k unknown parameters is a
negation-free bounded-time signal temporal logic formula with the syntax in Definition 3
where some of the time bounds of temporal operators and thresholds of atomic predicates
are not constants but instead, free parameters. The parameters are optionally associated with
interval constraints providing lower and upper bounds; that is, li ≤ pi ≤ ui for 1 ≤ i ≤ k
where li , ui are constant bounds.

Note that we assume templates are negation free. If there are no U operator in a formula
φ, then the negation in ¬φ can be pushed inside a formula until we are only left with negated
atomic predictes. Negated predicates can themselves be rewritten in negation-free form.

We say that an STL formula φ(v1, v2, . . . , vk) completes the STL template if the values
vi ∈ R for parameters pi satisfy all the bound constraints on pi .

Definition 9 Given a temporal logic property φ(v1, v2, . . . , vk) that completes
a template φ(p1, p2, . . . , pk), we define the ε-neighborhood of φ(v1, v2, . . . , vk) as
Nε(φ(v1, v2, . . . , vk)) = {φ(v′

1, v
′
2, . . . , v

′
k) s.t . |vi − v′

i | ≤ ε for 1 ≤ i ≤ k}.
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Wenow formally define the problemof learning signal temporal logic formula. The second
condition in Definition 10 ensures ε-tightness while the first condition ensures that the STL
formula is consistent with positive examples.

Definition 10 Given a set of traces T and template STL φ(p1, p2, . . . , pk), the problem of
learning ε-tight STL formula is to learn the values of the parameters, pi = v∗

i , such that the
following is true:

– the STL formula φ(v∗
1 , v

∗
2 , . . . , v

∗
k ) holds over all traces in T , that is,

∀τ ∈ T : τ |� φ(v∗
1 , v

∗
2 , . . . , v

∗
k )

– there exists some φ(v1, v2, . . . , vk) ∈ Nε(φ(v∗
1 , v

∗
2 , . . . , v

∗
k )) that does not hold over at

least one trace in T ; that is,

∃τ ∈ T : τ �|� φ(v1, v2, . . . , vk)

Wehave used the notation τ |� φ here to denoteψ(φ, τ, 0) = 
, whereψ is the qualitative
semantics presented in Definition 4.

We can solve the problem of learning ε-tight STL formulas by formulating the following
constrained multi-objective optimization problem where minimization is done with respect
to the free parameters p1, . . . , pk .

minimize {|ε1|, |ε2|, . . . , |εk |} s.t .
ε1 = p1 − p′

1, ε2 = p2 − p′
2, . . . , εk = pk − p′

k∀τ ∈ T τ |� φ(p1, p2, . . . , pk),
∃τ ′ ∈ T τ ′ �|� φ(p′

1, p
′
2, . . . , p

′
k)

We can check if the solution of the above problem solves our ε-tight learning problem by
checking if max{|ε1|, . . . , |εk |} is less than the desired ε (or, we could alternatively change
the above optimization problem to a min-max problem).

However, the above optimization problem is very difficult to solve in practice for two
reasons:

– First, it requires multi-objective optimization where the number of objectives, k, grows
with the number of parameters in the signal temporal logic formula.

– Second, the constraints require checking satisfiability of the bounded-time STL formula
over finite traces which is itself an NP hard problem.

The robustness metric for quantitative satisfiability of STL formula allows us to replace
satisfiability checking with nonlinear constraints in the above optimization problem.

minimize {|ε1|, |ε2|, . . . , |εk |} s.t .
ε1 = p1 − p′

1, ε2 = p2 − p′
2, . . . , εk = pk − p′

k∀τ ∈ T ρ(φ(p1, p2, . . . , pk), τ, 0) ≥ 0,
∃τ ′ ∈ T ρ(φ(p′

1, p
′
2, . . . , p

′
k), τ

′, 0) < 0

Next, we notice that the robustnessmetric is continuous in the parameters pi corresponding to
inequality thresholds and time-bounds and hence, one could expect that we will obtain a rea-
sonable solution for the above problem by solving the following simpler scalar optimization
problem:

minimizep1,p2,...,pk min
τ∈T |ρ(φ(p1, p2, . . . , pk), τ, 0)|

There are two problems with this approach of solving the tight-STL learning problem
using the above optimization problem.
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Fig. 1 a The absolute value of robustness metric reaches 0 at α = 8. It is close to 0 even at 7.99 even though
the temporal property corresponding to α = 7.99 is violated by the trace. b The ideal metric should be negative
when α < 8 and jump to ∞ when α = 8 and drop down to 0 when α > 8. c A metric which is negative for
α < 8, reaches its maxima between 8 and 8 + ε and then drops to 0

– This optimization problem uses the absolute value of the robustness metric. This metric
is generally not differentiable at ρ(φ(p1, p2, . . . , pk)) = 0.

– Further, if we get an ε-approximate solution for the above optimization problem, it no
longer guarantees that all traces will satisfy the instantiated template φ. This is because
the absolute value can be a small positive number even when the actual value is a small
negative number.

In Fig. 1, we use the example at the beginning of the section to illustrate the problem.
Figure 1b illustrates an ideal metric, because it achieves its maximum at the the boundary of
satisfiability and unsatisfiability. Maximizing this metric would yield tight STL property but
optimizing such a discontinuous function is difficult. Figure 1c illustrates a more practical
incarnation of the ideal metric, which is not discontinuous but still useful to learn ε tight STL
property. Our main contribution is designing such a metric.

4.3 Tightness metric

We begin by first defining a tightness metric for predicates. We would like the metric to
achieve its maximum value at the boundary in order to discover tight STL properties. For a
predicateμ(x) := g(x) ≥ α, recall that the robustnessmetric isρ(μ, τ, t) = g(τ (t))−α = r .
We would like to define a tightness metric θ(μ, τ, t) such that it is similar to Fig. 1c, and
hence we define it to be

1

r + e−βr
− e−r

where β ≥ 1 is an adjustable parameter.
This function is plotted in Fig. 2 and it approaches the ideal function in Fig. 1b as β

increases albeit at the cost of numerical stability during optimization. This function is smooth
(its derivative is defined and also continuous), and hence, is amenable to gradient-based
numerical optimization techniques. Finding an ε-tight value of α reduces to maximizing θ

with appropriate choice of β—lower values of ε require higher values of β. Apart from the
predicates, the other difficult cases for defining the tightness metric (θ ) happen to be the
temporal operators. The requirement here is that the metric θ should be defined such that
it prefers longer time intervals for globally operator and shorter for eventually operator as
illustrated in Fig. 3.
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Fig. 2 Tightness metric θ for predicate

We next formally define the tight quantitative semantics over negation-free STL properties
and show how it can be used to formulate the problem of learning consistent and tight STL
property as a numerical optimization problem over a single (scalar) cost metric. If the original
formula has negation, it is pushed inwards through Boolean combinations, F and G temporal
operations, and the inequality in predicate is flipped. Negation can also be pushed inwards
through discrete bounded time U operator via case-splitting. Further, since we deal with
continuous signals, we consider only non-strict inequalities as predicates and relax strict
inequalities if needed.

Definition 11 The tightness metric θ : F ×T × ST �→ R∪{−∞,∞}maps an STL formula
φ ∈ F , a trace τ ∈ T , and a sampled time instance t ∈ ST to a real value s.t.:

– θ(
, τ, t) = ∞, θ(⊥, τ, t) = −∞
– θ(μ, τ, t) = P(g(τ (t)) − α) where μ(x) := (g(x) ≥ α)

– θ(φ1 ∧ φ2, τ, t) = min(θ(φ1, τ, t), θ(φ2, τ, t))
– θ(φ1 ∨ φ2, τ, t) = max(θ(φ1, τ, t), θ(φ2, τ, t))
– θ(F[t1,t2]φ, τ, t) = C(γ, t1, t2) sup

t ′∈[t+t1,t+t2]
θ(φ, τ, t ′)

– θ(G[t1,t2]φ, τ, t) = E(γ, t1, t2) inf
t ′∈[t+t1,t+t2)

θ(φ, τ, t ′)

– θ(φ1U[t1,t2]φ2, τ, t) = E(γ, t1, t2) sup
t ′∈[t+t1,t+t2]

(min(θ(φ2, τ, t
′), inf

t ′′∈[t,t ′)
θ(φ1, τ, t

′′)))

where the peak function P(r) = 1
r+ e−βr − e−r , the contraction function C(γ, t1, t2) =

2
1+ eγ (t2−t1+1) , the expansion function E(γ, t1, t2) = 2

1+ e−γ (t2−t1+1) , β ≥ 1 is a coefficient
chosen to determine sharpness of peak and γ ≥ 0 is a coefficient chosen to trade-off tightness
in time vs tightness over predicates for a given time-scale and spread of continuous variables.
We choose to use the expansion function E in the definition of tightness of U-formulae. We
could replace E by C if shorter time-intervals are preferred in the U-operator.

If both the time-interval and predicate threshold is unknown for a temporal operator, then
there is a choice in either tightening time-intervals and discovering predicates that hold over
these or to find tighter predicates over longer (in case of eventually) and shorter (in case of
globally) operators. Increasing γ would result in tighter time-intervals. Increasing β would
result in tighter predicates.
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Fig. 3 Tightness metric θ

In the following theorem, we summarize the relation between the tightness metric and
satisfaction of STL formula.

Theorem 1 The tightness metric for a given STL formula φ, namely θ(φ, τ, t) is nonnegative
if and only if τ satisfies φ at time t.

Proof Wefirst show that θ(φ, τ, t) ≥ 0 if andonly ifρ(φ, τ, t) ≥ 0using structural induction.
We have only two nontrivial cases:

– Atomic Predicates: We know that 1
r+ e−βr − e−r ≥ 0 where β ≥ 1 if and only if r ≥ 0.

Hence, θ(μ, τ, t) = 1
r+ e−βr − e−r ≥ 0 if and only if r = g(τ (t)) − α = ρ(μ, τ, t) ≥ 0

– Temporal Operators: C(γ, t1, t2) = 2
1+ eγ (t2−t1+1) ≥ 0 for all t2 > t1 and E(γ, t1, t2) =

2
1+ e−γ (t2−t1+1) ≥ 0 for all t2 > t1. Hence, θ has the same sign as ρ, that is, θ(φ, τ, t) ≥ 0
if and only if ρ(φ, τ, t) ≥ 0.
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Thus, θ(φ, τ, t) ≥ 0 if and only if ρ(φ, τ, t) ≥ 0 and we know that ρ(φ, τ, t) ≥ 0 if and
only if τ satisfies φ at time t . ��

The theorem above shows that a STL formula φ that has positive tightness metric (over
all the traces τ in some set T ) will also evaluate to True in all these traces. But we want a
formula that is not only consistent with the traces, but also tight on the traces. The following
lemma says that optimizing for the tightness metric results in tight formulas.

Lemma 1 Given a trace τ and a template STL formula φ(p1, p2, . . . , pk) with k unknown
parameters (Definition 8), let

(v∗
1 , v

∗
2 , . . . , v

∗
k ) = arg max

p1,p2,...,pk
θ(φ(p1, p2, . . . , pk), τ, 0)

be a solution v∗ = (v∗
1 , . . . , v

∗
k ) such that θ(φ(v∗), τ, 0) is a finite nonnegative value. Then

v∗ is a solution for the ε-tight STL learning problem on the singleton set {τ } of traces for
any value of ε such that ε > η, where η is no more than the robustness ρ(φ(v∗), τ, 0) of the
discovered instantiated formula. The value η can be made arbitrarily small with appropriate
choice of β, γ .

Proof We again argue by structural induction over the template φ. Since φ is negation-free,
we have three cases:

– Case 1 If the top symbol of φ is a temporal operator with a time bound [t1, t2] such that
either t1 or t2 is a parameter, then our definition of θ guarantees that the interval [t∗1 , t∗2 ]
(in the instantiated solution) is maximally elongated or contracted, and hence φ(v∗) can
be falsified by an ε perturbatation to the interval, for any ε > 0.

– Case 2 If φ is an atomic predicate, then the robustness measure ρ clearly defines the
minimum perturbation required to falsify it.

– Case 3 If the top symbol of φ is ∨ or ∧, we can reason inductively one or both of the
sub-formulas.

For the second part, note that we can decrease η by choosing a large β and γ > 0. The
value of r at which the function 1

r+ e−βr − e−r peaks monotonically decreases with β and
hence, more tight predicates (smaller r ) can be learned by increasing β. Hence, η decreases
by increasing β. From the definition of C, we observe that the function 2

1+ eγ (Δt+1) decreases

monotonically with γ and the function 2
1+ e−γ (Δt+1) increases monotonically with γ . Thus, if

γ > 0, these functions cause us to learn the largest or smallest possible time interval, and
hence changing the learned intervals even slightly falsifies the formula. Hence, if γ > 0,
then η = 0 for formulas that have a parametric temporal operator at the top. ��
Theorem 2 Given a set of traces T and a template STL formula φ(p1, p2, . . . , pk), let

(v∗
1 , v

∗
2 , . . . , v

∗
k ) = arg max

p1,p2,...,pk
[min
τ∈T θ(φ(p1, p2, . . . , pk), τ, 0)]

define the solution v∗ = (v∗
1 , . . . , v

∗
k ) such that minτ∈T θ(φ(v∗), τ, 0) is nonnegative. Then

the learnt formula φ(v∗) solves the ε-tight STL learning problem for a value of ε such that
ε > η, where η = minτ∈T ρ(φ(v∗

1 , . . . , v
∗
k ), τ, 0) is the standard robustness measure of the

discovered instantiated formula. The value η gets no larger by increasing β and γ .

Proof For predicates, η decreases with increasing values of β. From the definition of C,
we observe that the function 2

1+ eγ (Δt+1) decreases monotonically with γ and the function
2

1+ e−γ (Δt+1) increases monotonically with γ . Thus, the time-bounds in the temporal operator
can be learned more tightly by increasing γ , that is, η reduces with increase in γ . Thus, η

decreases with increasing β, γ values for all predicates and temporal operators. ��
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4.4 Numerical optimization

We use an off-the-shelf solver—quasi-Newton algorithm [14,43] to solve the above opti-
mization problem. It uses gradient during optimization where the search direction in each
iteration i is computed as di = −Hi gi . Hi is the inverse of the Hessian matrix and gi is
the current derivative. The Hessian is a matrix of second-order partial derivatives of the cost
function and describes its local curvature. Due to the smoothness of the defined tightnessmet-
ric θ , gradient-based optimization techniques are very effective in solving the STL learning
problem since both the gradient and the Hessian can be conveniently computed.

We also used the gradient-free optimization to experimentally validate the advantage of
smoothness of tightness metric. The optimization engine behind gradient-free optimization
is differential evolution [36].

5 Learning structure of STL template

In Sect. 4, STL learning required providing a template. Coming up with this template can be
difficult in some applications. We now present an automated approach to learn the structure
of the formula. We first define an augmented signal trajectory that extends a given signal
trajectory with quantitative robustness metric values for a given set of STL properties.

Definition 12 Given a trajectory τ that maps variables X = {x1, x2, . . . , xn} to real values
for a set of time instants, and a set of signal temporal logic properties � = {φ1, φ2, . . . , φm},
an augmented signal τ� maps an augmented set of variables X = {x1, x2, . . . , xn, r1,
r2, . . . , rm} to real values for the time instants in τ such that the value of the newly introduced
variable r j at any time instant is the value of the robustness metric of satisfiability of φ j for
τ , that is,

r j (t) = ρ(φ j , τ, t) for all t > Δ(ρ) and − ∞ otherwise

We demonstrate an augmented trajectory in Fig. 4. The original trace τ comprises of a
single variable x and the only signal temporal logic property used to augment τ isG[0,2]x ≥ 5.
The figure shows the original signal and the new signal corresponding to the robustness value
of the STL property.We use augmented trajectories to discover nesting of temporal properties
that produce more tightly fitting STL properties for a trace.

We next make an important observation that is central to discover STL formulas withmore
complex Boolean combination structure. Intuitively, we combine STL sub-formulas with
positive robustness values using conjunction and combine STL sub-formulas with negative
robustness values using disjunction.

Lemma 2 Given a trajectory τ and two sub-formulas φ1 and φ2 such that ρ(τ, φ1, t) ≥ 0
and ρ(τ, φ2, t) ≥ 0, then ρ(τ, φ1 ∧ φ2, t) ≥ 0

Proof The proof follows from the definition of robustness metric value. The robustness
metric has non-negative value if and only if the sub-formula is satisfied by the trace. If two
sub-formula are satisfied by the trace, their conjunction must also be satisfied by it. ��
Observation If ρ(τ, φ1, t) < 0 and ρ(τ, φ2, t) < 0, then it is still possible that ρ(τ, φ1 ∨
φ2, t) ≥ 0

Given a set of candidate inequality predicate templates P over the signals and the set of
traces T , we now describe an algorithm that incrementally builds more complex STL formula
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Fig. 4 Augmented trace: x is the variable in the original trace and new signal corresponds to robustness metric
value of G[0,2]x ≥ 5

and learns parameters for them using the parameter learning method described in Sect. 4.
The overall procedure is presented in Algorithm 1. It uses the following key sub-procedures:

– Temporal(P) : This sub-procedure takes a set of predicates and generates all single-
level parametric STL templates, that is,

Temporal(P) = {F[a,b] p | p ∈ P} ∪ {F[a,b] p | p ∈ P} ∪ {p1U[a,b] p2 | p1, p2 ∈ P}
where a, b denote new parameters in the STL templates.

– Disjunt(T ,�) : This sub-procedure takes a set of formula with negative robustness
values, and generates disjunct templates, that is,

Disjunct(T ,�) = {ψ1 ∨ ψ2 | ψ1 ∈ Tmpl(φ1), ψ2 ∈ Tmpl(φ2) and

φ1, φ2 ∈ R(T ,�)}
where R(T ,�) = {φ | ρ(φ, τ) < 0 for some τ ∈ T }, and Tmpl(φ) is a set of STL
templates obtained by replacing either the values of temporal operator intervals with
parameters or inequality thresholds with parameters. Due to scalability reasons, we do
not keep both these parameters as free in a template.

– AugmentPred(P,�): This sub-procedure augments the set of predicates P with new
predicates that check whether robustness metric value of the formulas in � is greater
than zero, that is,

AugmentPred(P,�) = P ∪ {r j ≥ 0, r j < 0 | r j = ρ(φ j ), φ j ∈ �}
– AugmentTraj(T ,�): This sub-procedure takes a set of trajectories and a set of STL

formulas, and generates a new set of augmented trajectorieswhere each original trajectory
is augmented with the corresponding robustness metric values of the STL properties, that
is,

Augment(T ,�) = {τφ | τ ∈ T , φ ∈ �}
– Select(T ,�, i) : This sub-procedure implements the heuristic to select sub-formula

from which more complex formula needs to be constructed at iteration i . If it returns
a single formula, the STL learning algorithms terminates reporting this formula as the
learned STL. If it becomes empty, then the algorithm terminates reporting that no con-
sistent STL formula can be learned from the given trajectories and with the given set
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of predicates. We adopt an heuristic that initially maintains a diverse set and gradually
prefers only those formula which are tightly satisfied by traces in T . Specifically,

Select(T ,�, i) = {φ | − md f (φ, i) ≤ ρ(φ) ≤ md f (φ, i)}
where md f (φ, i) is monotonically decreasing in both, the complexity measure χ of φ

and its second argument i . We choose an exponentially decreasing functionmd f (φ, i) =
ρave−i/χ(φ) where ρav is the average absolute value of the robustness metric for for-
mulas over the trajectories in the previous iteration.

Algorithm 1 Learning STL formulas with structure
1: procedure LearnSTL(T , P)
2: i = 0, � = Temporal(P)

3: �s = {LearnParameterSTL(T , ψ) | ψ ∈ �}
4: �0 = Select(T ,�a , i)
5: while |�i | ≥ 1 do
6: T = AugmentTraj(T , �)

7: P = AugmentPred(P, �i )
8: �temporal = Temporal(P)

9: �dis junct = Disjunt(T , �)

10: � = �temporal ∪ �dis junct
11: �s = {LearnParameterSTL(T , ψ) | ψ ∈ �}
12: �i = Select(T , �s , i)
13: i = i+1
14: end while
15: Return �i
16: end procedure

The STL formula learned using Algorithm 1 includes auxiliary signals r j corresponding
to the robustness metric values of the sub-formulas. We post process the learned formula to
replace predicates r j ≥ 0 with the corresponding sub-formula φ j and the predicates r j < 0
with ¬φ j .

6 Experimental evaluation

The presented approach is implemented in a publicly available tool: TeLEx.1 We evaluated
the effectiveness of TeLEx on a number of synthetic and real case-studies. All experiments
were conducted on a quad core Intel Core i5-2450M CPU @ 2.50GHz with 3MB cache per
core and 4 GB RAM.

We first describe the results of the parameter learning approach presented in Sect. 4 for
each of the case-studies, followed by the evaluation of the structure learning algorithm in
Sect. 5.

6.1 Temporal bounds on signal x(t) = t sin(t2)

This case-study was designed to evaluate the scalability of TeLEx as well as the tight-
ness of learned STL formulas using a synthetic trajectory for which we already know the

1 https://github.com/susmitjha/TeLEX.
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Fig. 5 The signal x(t) and learned parameters of the STL formula

correct answer. We also compare gradient-based TeLEx with gradient-free optimization to
demonstrate the utility of smoothness of proposed tightness metric. We consider the signal
x(t) = t sin(t2).

We consider 12 STL templates of the form:

template(k) ≡
k∧

i=0

(G[i,i+1](x ≤ p2i ∧ x ≥ p2i+1))

where k = 0, 1, . . . , 11. Thus, the number of parameters in these templates grow from 2 to
24. We repeated learning experiments 10 times in each case since numerical optimization
routines are not deterministic.

Figure 5 shows the signal trace from time t = 0 to t = 12 alongwith the bounds discovered
by TeLEx while synthesizing the STL property using template template(12) (the largest
template) and gradient-based optimization. The tightness of bounds demonstrates that the
learned STL properties are tight (and have very low variance) even with 24 parameters. The
robustness values for learned STL properties were always very small (between 0.02 and
0.12). We observed that gradient-free differential evolution also discovered tight properties
in all cases (robustness value between (0.06 and 0.35) in which it terminated. Figure 6a, b
show the runtime of gradient-based and gradient-free optimization techniques respectively.
Gradient-free methods did not terminate in an hour for more than 18 parameters. We plot
the mean runtime (along with standard deviation) from 10 runs with respect to the number
of parameters being learnt for each of the 12 templates. The variability in runtime (standard
deviation plotted as error bars) increases with the number of parameters. We observe a speed-
up of 30X-100X using gradient-based approach due to the smoothness of tightness metric
(scales of y-axis in Fig. 6a, b are different).

6.2 Two agent surveillance

We consider a two agent surveillance system in which both agents monitor a 10x10 grid as
illustrated in Fig. 7. Intruders can pop up at any of the 8 locations marked by circles. But
at any point, there are at most two intruders. The two agents are initially at 0, 0 and 10, 10
respectively. The agents follow a simple protocol. At each time-instant, the agents calculate
the distance from their current location to the intruders (if any), then they select the intruder
closest to them as their target for inspection andmove towards it. The target of an agent might
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Fig. 6 Tightness and scalability of TeLEx using gradient based optimization
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Fig. 7 Two agent surveillance

change while moving (when second intruder pops up and it is closer to the agent moving
towards first). After an intruder location is inspected, it is considered neutralized and the agent
stays there until new target emerges. The simulator for this simple surveillance protocol is
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Fig. 8 Angle and speed for a subset of Udacity data

available at the tool website.2 We simulated this for 1000 time-steps and then used TeLEx
to learn STL corresponding to the following two properties.

– The maximum time between intruder popping up and being neutralized is 39.001 time-
steps.

– The distance between the two agents is at least 4.998. This non-collision between agents
is an emergent property due to “move-to-closest” policy of agents and the fact that there
are at most two intruders at any given time.

6.3 Udacity autonomous-car driving public data-set

In this case-study, we use the data made available publicly by Udacity as a part of its second
challenge for autonomous driving.3 The data corresponds to an instrumented car (2016 Lin-

2 https://github.com/susmitjha/TeLEX/blob/master/tests/twoagent.py.
3 https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2.
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coln MKZ) driving along El Camino Real (a major road in San Francisco Bay Area) starting
from the Udacity office in Mountain View and moving north towards San Francisco. We use
HMB_1 data-set which is a 221s snippet with a total of over 13205 samples. It has a mixture
of turns and straight driving.

The data-set includes steering angle, applied torque, speed, throttle, brake,GPS and image.
For our purpose, we focus on non-image data. The goal of this data-set is to provide real-
world training sample for autonomous driving. Figure 8 shows how the angle and speed vary
in the Udacity data-set.

We use the tight STL learning approach presented in this paper to learn temporal prop-
erties relating angle, torque and speed. Such learned temporal properties could have several
utilities. It could be used to examine whether a driving pattern (autonomous or manual) is
too conservative or too risky. It could be used to extract sensible logical relations that must
hold between different control inputs (say, speed and angle) from good manual driving data,
and then enforce these temporal properties on autonomous driving systems. It could also be
used to compare different autonomous driving solutions. We are interested in the following
set of properties and we present the result of extracting these using TeLEx . We would like
the robustness metric to be as close to 0 as possible and in all experiments below, we found
it to be below 0.005.

1. The speed of the car must be below some upper bound a ∈ [15, 25] if the angle is larger
than 0.2 or below −0.2. Intuitively, this property captures required slowing down of the
car when making a significant turn.

Template STL: G[0, 2.2e11](((angle ≥ 0.2)|(angle ≤ −0.2)) ⇒
(speed ≤ a?15; 25))

Synthesized STL: G[0.0, 2.2e11](((angle≥0.2)|(angle≤−0.2)) ⇒ (speed≤22.01))
Performance: Tightness Metric = 0.067

Robustness Metric = 0.004
Runtime: 8.64 s

2. Similar to the property above, the speed of the car must be low while applying a large
torque (say, more than 1.6). Usually, torque is applied to turn along with brake when
driving safely to avoid slipping.

Template STL: G[0, 2.2e11](((torque ≥ 1.6)|(torque ≤ −1.6)) ⇒
(speed ≤ a?15; 25))

Synthesized STL: G[0.0, 2.2e11](((torque ≥ 1.6)|(torque ≤ −1.6)) ⇒
(speed ≤ 23.64))

Performance: Tightness Metric = 0.221
Robustness Metric = 0.005

Runtime: 10.12 s

3. Another property of interest is to ensure that when the turn angle is high (say, above
0.06), the magnitude of negative torque applied is below a threshold. This avoids unsafe
driving behavior of making late sharp compensation torques to avoid wide turns.

Template STL: G[0, 2.2e11]((angle ≥ 0.06) ⇒ (torque ≥ b? − 2;−0.5))
Synthesized STL: G[0.0, 2.2e11]((angle ≥ 0.06) ⇒ (torque ≥ −1.06))
Performance: Tightness Metric = 0.113

Robustness Metric = 0.003
Runtime: 7.30 s
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4. Similarly, when the turn angle is low (say, below -0.06), the magnitude of positive torque
applied is below a threshold to avoid late sharp compensating torques.

Template STL: G[0, 2.2e11]((angle ≤ −0.06) ⇒ (torque ≤ b?0.5; 2))
Synthesized STL: G[0.0, 2.2e11]((angle ≤ −0.06) ⇒ (torque ≤ 1.25))
Performance: Tightness Metric = 0.472

Robustness Metric = 0.002
Runtime: 5.00 s

5. The torque also must not be so low that the turns are very slow and so, we require that
application of negative torque should decrease the angle below a threshold within some
fixed time.

Template STL: G[0, 2.2e11]((torque ≤ 0.0) ⇒ F[0.0, 1.2e8](angle ≤ a? − 1; 1))
Synthesized STL: G[0.0, 2.2e11]((torque ≤ 0.0) ⇒ F[0.0, 1.2e8](angle ≤ 0.01))
Performance: Tightness Metric = 0.727

Robustness Metric = 0.002
Runtime: 46.59 s

6.4 Learning structure of the STL formula

Next, we consider the problem of learning STL formulas for the case-studies without using
templates. As baseline for comparing the effectiveness and scalability of our incremental
approach, we use the genetic algorithm based method described in [8,39]. The timeout was
set to 3600s (1h).

Case-study STL property Runtime (s) of pro-
posed approach

Runtime (s) of Genetic
algorithm

x(t) = t sin(t2) k=0 929.5 825.7
k=1 1847.2 1479.2
k=2 1928.5 1723.6
k=3 2162.4 2489.2
k=4 2189.2 3005.7
k=5 2382.7 3487.5
k=6 2412.6 TO
k=7 2591.2 TO
k=8 2719.4 TO
k=9 2847.2 TO
k=10 TO TO
k=11 TO TO

Two agent surveillance Intruder detect 724.5 398.2
Non-collision 592.3 487.5

Autonomous car Property 1 2283.9 TO
Property 2 1937.6 TO
Property 3 728.3 2048.1
Property 4 794.8 1639.5
Property 5 TO TO
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7 Conclusion

In this paper, we presented a novel approach to learn tight STL formula using only positive
examples. Our approach is based on a new tightness metric that uses smooth functions. The
problem of learning tight STL properties admits a number of pareto-optimal solutions. We
would like to add the capability of specifying preference in which parameters are tightened.
Further, computation of the metrics on traces over optimization can be easily parallelized.
Another dimension is to study other metrics proposed in literature to quantify conformance
and extend tightness over these metrics [10,21]. In conclusion, TeLEx automates the learn-
ing of high-level STL properties from observed time-traces.
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