
Symbolic Reachability Analysis of

Lazy Linear Hybrid Automata?

Susmit Jha, Bryan A. Brady, and Sanjit A. Seshia

EECS Department, UC Berkeley
{jha,bbrady,sseshia}@eecs.berkeley.edu

Abstract. Lazy linear hybrid automata (LLHA) model the discrete
time behavior of control systems containing finite-precision sensors and
actuators interacting with their environment under bounded inertial de-
lays. In this paper, we present a symbolic technique for reachability anal-
ysis of lazy linear hybrid automata. The model permits invariants and
guards to be nonlinear predicates but requires flow values to be con-
stants. Assuming finite precision, flows represented by uniform linear
predicates can be reduced to those containing values from a finite set
of constants. We present an abstraction hierarchy for LLHA. Our veri-
fication technique is based on bounded model checking and k-induction
for reachability analysis at different levels of the abstraction hierarchy
within an abstraction-refinement framework. The counterexamples ob-
tained during BMC are used to construct refinements in each iteration.
Our technique is practical and compares favorably with state-of-the-art
tools, as demonstrated on examples that include the Air Traffic Alert
and Collision Avoidance System (TCAS).

1 Introduction

A hybrid system is a dynamical system which exhibits both discrete and con-
tinuous behavior. Hybrid automata [4] have proved to be useful mathematical
structures for modeling systems comprising discrete transition systems interact-
ing with continuous dynamical systems. However, it is clear that in any imple-
mentation of a hybrid automaton, the state of the dynamical system reported to
the discrete controller is digitized with finite precision by sensors, and the output
signals of the controller transmitted to its actuators are also of finite precision.
Further, the controller can only observe continuous state variables at discrete
time points. Hence, it is somewhat unrealistic to assume that the controller can
interact with its environment continuously and with infinite precision.

The inherent discrete nature of a controller of a hybrid system has led to
recent efforts [17, 2, 3, 1] towards studying the discrete time behavior of hybrid
systems. A similar argument in favor of focusing on discrete time behavior is
presented by Henzinger and Kopke [12]. Lazy linear hybrid automata (LLHA) [2,
3] model the discrete time behavior of hybrid systems having finite precision

? Supported in part by SRC contract 1355.001, NSF grants CNS-0644436 & CNS-
0627734, and Microsoft Research. The first author was also supported by the Berke-
ley Fellowship for Graduate Studies from UC Berkeley.

and bounded delays in actuation and sensing. Further, their definition of LLHA
allows nonlinear invariants and guards. However, the discrete behavior in this
model depends on the sampling frequency of the controller as well as the precision
of variables, and hence, the discretized representations are very large and any
enumerative analysis would not be feasible for systems of appreciable size.

In this paper, we present a symbolic technique for reachability analysis of
lazy linear hybrid automata. We make the following novel contributions:

1. On the theoretical side, we present an abstraction hierarchy for LLHA that
can be used for reachability analysis within a counterexample-guided abstraction-
refinement framework.

2. We give an implementation of a symbolic model checker for LLHA based
on bounded model checking and k-induction that operates at any level of
abstraction.

3. We demonstrate the scalability of our methods in comparison to other state-
of-the-art tools on examples such as Automated Highway Control System
(AHS) and the Air Traffic Alert and Collision Avoidance System (TCAS).

Related Work PHAver (Polyhedral Hybrid Automaton Verifyer) [11] is a
tool for verifying safety properties of hybrid systems. It uses on-the-fly over-
approximation to handle affine flows by iterative partitioning of the state space.
PHAver considers a continuous time model unlike the discrete time semantics
of LLHA. Our work is much more closer to the HYSDEL tool [17]. The discrete
hybrid automata underlying the HYSDEL tool is formed by the connection of a
finite state machine with a switched affine system through an interface. Our work
is similar to HYSDEL in its considering an inertial interface between the digital
and the continuous components of the hybrid system. Unlike our symbolic ap-
proach, HYSDEL uses numerical simulation for analysis. Further, our technique
allows guards and invariants that use any computable function. HSolver [18, 8]
also allows general constraints over variables as invariants and guards. It uses
interval arithmetic to check whether trajectories can move over the boundaries
in a rectangular grid. Our technique uses SAT-based decision procedures for
finite-precision arithmetic to do a symbolic analysis instead of an enumerative
analysis. Another closely related tool is HybridSAL [21, 20], which constructs
discrete finite state abstractions for hybrid systems using predicate abstraction.
The tool uses decision procedures and the SAL explicit state model checker. Our
approach performs abstraction over the domain of variables, and uses symbolic
model checking based on bit-vector decision procedures.

The examples used in this paper have been well-studied; for details on pre-
vious case studies, we refer the reader to the relevant references on TCAS [16,
15] and AHS [9, 14].

2 Lazy Linear Hybrid Automata

Definition 1. A finite precision lazy linear hybrid automaton(LLHA) [3] is a
tuple (X,V, init, f low, inv, E, jump,D, ε, B, P). The components of LLHA are
as follows:

– Variables : A finite ordered set X = {x1, x2, . . . , xn} of continuous variables.

– Control modes : A finite set V of control modes.
– Initial conditions : A labeling function init that assigns an initial condition

to each control mode v ∈ V . The initial condition is a predicate over the
variables in X.

– Flow: The possible values of rate of change of any variable in a control mode
form a finite set of constant values. Let the set representing the legal flow
values for variable xi be denoted by Ẋi. The predicate flow(v) ≡ (ẋ1 ∈

Ẋ1) ∧ (ẋ2 ∈ Ẋ2) . . . ∧ (ẋn ∈ Ẋn) represents legal flows at location v ∈ V .
– Invariant condition : A labeling function inv that assigns an invariant condi-

tion to each control mode v ∈ V . The invariant condition inv(v) is a convex
predicate over the variables in X.

– Control switches : A set E of edges (v, v′) from a source mode v ∈ V to a tar-
get mode v′ ∈ V . A function “update(v,v′)” associates a variable assignment
to each control switch (v, v′).

– Jump conditions : A labeling function jump that assigns a jump condition
to each control switch e ∈ E. A jump condition from the control mode v to
v′, ψ(v,v′) is a predicate over the variables in X.

– Delay parameters : D = {g, δg, h, δh} is the set of delay parameters such that
0 ≤ g ≤ g + δg < h ≤ h + δh ≤ P , where h denotes the sensing delay, g
denotes the actuation delay and P is the sampling interval of the controller.

– Precision : εi is the precision of measurement of variable xi.
– Range : Bi = [Bimin

, Bimax
] is the range of the variable xi.

– Period P represents the time period associated with the discrete controller i.e.
control mode switches take place at times T0, T1, T2, . . . where Tk+1 = Tk +P .

The lazy semantics of hybrid automata [2, 3] means that if a control mode
switch took place at time Tk, then the delay in actuating a change in flow lies
between [Tk + g, Tk + g+ δg]. Similarly, a control decision made at time Tk+1 is
based on the values of variables read by the controller at some time in the interval
[Tk+h, Tk+h+δh]. The parameters δg and δh represent the bounded uncertainty
in actuation and sensing delay respectively. Since the sampling frequency of any
implementation of a hybrid automata is always finite, this model focuses on the
discrete time behavior of the hybrid automata.

The precision εi depends on the accuracy of the sensors measuring xi from
the continuous dynamical system. Guards and state invariants are evaluated on
the values of the xi variables that have been rounded using the value of εi. The
parameter B reflects the range of values which can be taken by a state variable
associated with a fixed width register. Unlike the conventional definition of linear
hybrid automata [12], invariants and guards in LLHA can be nonlinear.

The flows in linear hybrid automata are represented using convex linear
predicates over only the rates of change of variables (also called uniform lin-
ear predicates [13]). Under the assumption of finite precision, such flows can
be considered as set of constant values of rate of change of different continuous
variables. Thus, LLHA can be used for representing hybrid systems with convex
linear flows. (This point is further discussed in the Appendix.) Note that the
above model is same as the one formulated by Agrawal and Thiagarajan [2, 3].

Definition 2. A configuration of a hybrid automaton, with n continuous vari-
ables, is a n+1-tuple, c = (s, x1, x2, . . . , xn) where s ∈ V is the control mode,

x1, x2, . . . , xn is the valuation of the continuous variables of the hybrid automa-
ton.

The semantics of a hybrid automaton describes its evolution in terms of
change in configuration. We use the notation c+ α to denote the configuration
in which continuous state variables are incremented by α. Also, we extend the
order relation on the continuous variables to configurations. We say that c ≤ c′

if we know that xi ≤ x
′
i for each xi in c and the corresponding x′i in c′.

We define a symbolic collection of configurations as a state of the hybrid au-
tomaton and describe the evolution of the hybrid automaton in terms of change
in its state. This definition is used in Section 4 to present the bounded model
checking algorithm.

Definition 3. A state of the hybrid automaton is a pair (v, φ) consisting of a
control mode v ∈ V and a predicate φ over the variables X. We identify that the
state of a hybrid automaton can change in two ways - flow or jump.

– flow: The changed state of a hybrid automata due to flow at control mode v

for time T is (v, φT), where

φT = ∃X1∃Ẋ {(φ ∧ inv(v))[X ← X1] ∧X = X1 + ẊT ∧ (Ẋ |= flow(v)) ∧
inv(v)}.

– jump: If (v, φ) is state of a system, and (v, v′) is a control switch such that
φ |= jump(v, v′), then the state of the system can change to (v′, φ′) such that
if update(v,v′) was the update function over Y ⊆ X,

φ′ = ∃Y1{(φ ∧ inv(v) ∧ ψ(v,v′))[Y ← Y1] ∧ Y = update(v,v′)(Y1)},
where update(v,v′) is the update function over Y ⊆ X.

A state s2 = (v, φ2) is reachable from s1 = (u, φ1) if and only if there is a
sequence of flow or jump transitions from s1 to s2.

3 Hierarchical Abstraction

We detail the theory underlying our hierarchical abstraction technique below.
For brevity, proofs of some theorems have been omitted.

Agrawal and Thiagarajan [2, 3] use two fundamental quantities in their anal-
ysis. The fundamental time interval is ∆ = G.C.D of {P, g, δg, h, δh}. The corre-

sponding abstraction quantum is Γ = G.C.D of
⋃

i

{εi/2, B
min
i , Bmax

i , V in
i , ẋi∆}.

Abstraction. We begin with basic definitions on how abstraction is performed.
For ease of presentation, all variables are abstracted in the same way; the theory
can be easily extended to a non-uniform abstraction.

Definition 4. QΠ is a surjection over the continuous variables using abstrac-
tion quantum Π = 2kΓ for some integer k. That is,
QΠ : R→ R, and QΠ(xi) = kiΠ iff xi = kiΠ+πi, where ki ∈ Z and 0 ≤ πi < Π.

Abstract Configuration: A configuration cd = (sd, xd
1, x

d
2, . . . , x

d
n) is aΠ-abstraction

of a concrete configuration c = (s, x1, x2, . . . , xn) iff sd = s and xd
i = QΠ(xi).

Abstract Transition: Transitions are abstracted by abstracting jump and flow
conditions. This must be done in order to ensure that transitions that are fea-
sible in the concrete LLHA continue to be feasible in the abstract transition
system, at the possible cost of introducing additional (spurious) behaviors.

1. The intuition behind the following definition of abstract guards and invari-
ants is to relax the atomic constraints so that if Φ(x1, x2, . . . , xn) denotes
a state invariant or guard, then the corresponding abstracted invariant or
guard is Φa(x1, x2, . . . , xn) such that Φ(x1, x2, . . . , xn) =⇒ Φa(x1, x2, . . . , xn).

2. The set of flow values are abstracted to overapproximate the reachable con-
figurations. If the flow value in a set Ẋ is ẋ, it is abstracted by including
flow values ẋa and ẋb in its place, where ẋa ≤ ẋ ≤ ẋb (details given below).

We first describe how invariants and guards are abstracted, and then describe
the over-approximation of flow.
Abstraction of invariants and guards. Invariants or guards can be expressed as
a Boolean combination of atomic predicates in negation normal form (NNF),
where each predicate is of the form f(x1, x2 . . . , xn) ≤ b where b ∈ Q. If Φ is an
invariant or guard, then Φ = fbool(c1, c2, . . . , cn) where the constraint ci is fi ≤ bi
and where fbool represents an NNF Boolean combination of its arguments.

Each predicate in the invariant or guard can be abstracted using the mono-
tonicity of f with respect to each variable xi, that is, fxi

= δf
δxi

is of the same
sign over the range of interest. In particular, all polynomials which are linear in
each variable, are always monotonic with respect to each variable.

In order to define abstract state invariants and guards, we first describe how
to construct abstract inequalities using the above observation about invariants
and guards. Without loss of generality, let us assume that f(x1, x2 . . . , xn) ≤ b
is an inequality whose partial derivative fxi

with respect to each variable xi

is of the same sign over the range of interest [QΠ(xi), QΠ(xi + Π)]. Then, its
(conservative) abstraction is the relaxed inequality c′i defined below:

c′i ≡ f(k1, k2 . . . , kn) ≤ b′

where b′ = QΠ(b+Π) and ki = QΠ(xi) if fxi
≥ 0

= QΠ(xi +Π) if fxi
< 0

This abstraction rounds up or down each variable to the nearest multiple
of Π depending on whether the function f decreases or increases with increase
in the variable. The constant b is always rounded up. All assignments to the
variables which satisfied the earlier constraint also satisfy the relaxed constraint.
Hence, this is an overapproximation of the original constraint.

If Φ(x1, x2, . . . , xn) = fbool(f1 ≤ b1, . . . , fn ≤ bn) is the invariant or guard,
the abstract state invariant or guard is defined as
Φa(k1, k2, . . . , kn) = fbool(c

′
1, c

′
2, . . . , c

′
n)

where the relaxed inequalities c′i are obtained from fi ≤ bi as described above.
Thus, this relaxation results into an upper approximation of the behavior of

the hybrid automaton.
Abstraction of flow conditions. If ẋ is a rate of change allowed by flow(s) for
some location s, then the following two rates of change represent its abstrac-
tion b(ẋ

Π)cΠ and d(ẋ
Π)eΠ . Figures 1(a) and 1(b) illustrate how flow conditions

are abstracted. The abstraction of flow with 2Γ leads to an overapproximation of
the dynamics of the LLHA: originally ẋ ∈ {3, 4, 5, 6}, but in the 2Γ -abstraction
ẋ ∈ {2, 4, 6, 8}.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

5

6

7

8

9

10

4

Reachable values in Γ transition system

time (l∆)

X (kΓ)

(a) 0-abstraction

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

5

6

7

8

9

10

4

approximation

time (l∆)

X (kΓ)

Reachable values in 2Γ

(b) 1-abstraction

Fig. 1. Illustration of flow abstraction

Definition 5. A k-abstraction (k ≥ 1) of a lazy linear hybrid automaton is
an abstraction of LLHA obtained using the above explained abstraction of con-
figurations and transitions such that Π = 2kΓ . The 0-abstraction is called the
Γ -transition system as the quantization is done with respect to Γ .

We define a partial order relation � between transition systems below.

Definition 6. Let TS and TS ′ be two transition systems such that every state
of TS is mapped to some state of TS ′. If every state of TS reachable from some
initial state of TS has its corresponding state in TS ′ also reachable from an
initial state of TS′, then TS � TS′.

Prior Results. Our model of LLHA is the same as that of Agrawal and Thi-
agarajan [3], who initially consider a model with constant flow rate and linear
invariants, and later extend the result to invariants and guards which are any
“reasonable computable function”. The main result of theirs which we utilize is
summarized in Theorem 1.

Theorem 1. Let a configuration of hybrid automata be c = (s, x1, x2, . . . , xn)
and its Γ -abstract configuration be cd = (s,QΓ (x1), QΓ (x2), . . . , QΓ (xn)). A con-
figuration c′ is reachable from c iff QΓ (c′) = c′d where c′d is reachable from cd

in Γ -transition system.

Let xmax and xmin be the maximum and minimum values that can be at-
tained by any continuous variable and m be the number of control modes. The
state space size of the Γ -transition system is O(m422n(xmax−xmin

Γ)3n) [3], that is,
exponential in the number of continuous variables. This huge state space makes
it impractical to do any enumerative reachability analysis.

Our Results. The main result is that the k-abstraction of LLHA simulates the
original LLHA. Further, for increasing values of k, we obtain coarser overapprox-
imations of the LLHA which form a hierarchy of sound abstractions. Figure 2
illustrates the meaning of Theorem 2.

Theorem 2. Let a configuration of hybrid automata be c = (s, x1, x2, . . . , xn)
and its abstraction be cd = (s,QΠ(x1), QΠ(x2), . . . , QΠ(xn)), where Π = 2kΓ .
If a configuration

c′ is reachable from c in time T = l∆ and QΠ(c′) = c′d, then c′d is
reachable from cd in the k-abstraction.

Proof. For configuration c = (s, x1, x2, . . . , xn), let ẋ1, ẋ2 . . . , ẋn be the rates of

change of continuous variables satisfying flow(s) and ̂̇x1, ̂̇x2, . . . , x̂n be the rates
of change of continuous variables satisfying flow(ŝ) where ŝ is a predecessor
state of s, that is, (ŝ, s) ∈ E. Let c′ be a configuration reachable from c. In case
of change due to reset of variables at jump, the above theorem follows due to
the adjustment to guards and invariants. We prove the above theorem for the
case where the change is effected due to flow evolution.

Since, the relation ≤ for configurations is defined in terms of the ordering
of individual variable, we consider an arbitrary variable in the rest of the proof
below. If xi is the value of the variable in c and x′i is the value in c′ after time
T such that the flow rate switched after an actuation delay of t, then

x′i = xi + ̂̇xit+ ẋi(T − t)
Using the definition of Γ and ∆,

xi = (m2k + n)Γ + γi, ̂̇xi∆ = (2kp′ + q′)Γ , and ẋi∆ = (2kp+ q)Γ ,
where 0 ≤ n < 2k, 0 ≤ γi < Γ , 0 ≤ q′ < 2k, 0 ≤ q < 2k.

So, x′i = (m2k + n)Γ + γi + (2kp′ + q′) Γ
∆ t+ (2kp+ q) Γ

∆ (l∆− t)

= (m2k + n)Γ + γi + (2k(p′ − p) + (q′ − q)) Γ
∆ t+ (2kp+ q)lΓ

Thus, x′i = (m+ pl)2kΓ + (n+ ql)Γ + γi + (2k(p′ − p) + (q′ − q)) Γ
∆ t.

Since 0 ≤ t < T in the above equation and 2kΓ = Π , x′i lies in the interval

– [(m+ pl)Π, (m+ (p′ + 1)l + 1)Π) if ẋi ≥ ̂̇xi

– [(m+ p′l)Π, (m+ (p+ 1)l + 1)Π) if ̂̇xi ≥ ẋi

So, QΠ(x′i) lies in the interval

– [(m+ pl)Π, (m+ (p′ + 1)l)Π] if ẋi ≥ ̂̇xi

– [(m+ p′l)Π, (m+ (p+ 1)l)Π] if ̂̇xi ≥ ẋi

The value of ith variable in any configuration c′d reachable from cd in the
k-abstraction, x′di lies in

– [(m+ pl)Π, (m+ (p′ + 1)l)Π] if ẋi ≥ ̂̇xi

– [(m+ p′l)Π, (m+ (p+ 1)l)Π] if ̂̇xi ≥ ẋi

c

k−abstraction

next(cd) : Succesors of cd in k-abstractioncd

k-abstraction(next(c)) ⊆ next(cd)

next(c) : Succesors of c in Γ transition system

Fig. 2. Simulation by k-abstraction

Thus, for any x′i, there exists x′di such that x′di = QΠ(x′i). Using the same
argument for each variable independently, the theorem immediately follows. ut

Using reasoning exactly similar to the one used in Theorem 2, we can prove
the hierarchy of k-abstractions presented below.

Lemma 1. Let a configuration of k-abstraction be
c = (s,QΠ(x1), QΠ(x2), . . . , QΠ(xn)), where Π = 2kΓ .

Its abstraction in k̃-abstraction, where k̃ ≥ k

c̃ = (s,Q eΠ(x1), Q eΠ(x2), . . . , Q eΠ(xn)) where Π̃ = 2
ekΓ .

If a configuration c′ is reachable from c in k-abstraction, then

– QΠ′(c′) = c̃′ where Π ′ = 2
ek−kΓ

– c̃′ is reachable from c̃ in k̃-abstraction.

The Hierarchy Theorem 3 follows from Lemma 1 and Theorem 1.

Theorem 3. k-abstraction � k′-abstraction if 0 ≤ k < k′. Thus, k-abstractions,
where k ≥ 0, form an hierarchical abstractions of the lazy linear hybrid automata.
Further, 0-abstraction is the Γ -abstract transition system which bisimulates the
original lazy linear hybrid automaton.

Theorem 3 provides a framework for use of progressive abstraction of lazy
linear hybrid automata to develop a sound and complete abstraction-refinement
paradigm for reachability analysis of LLHA. Theorem 4 presents the relative
reduction in state space size with k.

Theorem 4. Let Sk be the state space size of k-abstraction and S ′
k of k′-abstraction

where k′ > k. Then log2(S
′
k/Sk) = 3n(k − k′) where n is the number of contin-

uous variables.

4 Model Checking k-abstractions of LLHA

Our implementation of a symbolic verifier of LLHA is based on three techniques:
bounded model checking, “k-induction”, and an overall counterexample-guided
abstraction-refinement [7] framework. We describe each of these below.

We first present a symbolic representation of k-abstraction of the hybrid au-
tomata as stated in Definition 5. The continuous variables X = (x1, x2, . . . , xn)
are symbolically represented with integer variables K = (k1, k2, . . . , kn) with the
intended mapping being QΠ(xi) = kiΠ , where Π = 2kΓ .

In the discussion below, we use the three components - guards (Ψij), in-
variants (invi) and the flow conditions flow(i) of the k-abstraction to define
a symbolic transition relation TR. This is then used to describe the bounded
model checking and inductive verification techniques.
Bounded model checking: We describe how the BMC formula is constructed,
starting with a useful definition.

Definition 7. A frame (F) is a tuple (K, t1, t2, t, l) where K = (k1, k2 . . . kn)
represent the variables; t1 is the sensing delay; t2 is the actuation delay t2; t is
the time before transition to next frame; l denotes the control mode.

The initial state of the hybrid automata is the predicate Init(F0) ≡ (l =
vstart) ∧ φ0(K), where vstart denotes the initial control mode and φ0 the initial
predicate over continuous variables.

The transition TR is defined as a predicate over the previous frame (Fm−1)
and the present frame (Fm). It is a disjunction of all possible state switches (Gij)
and flow evolutions (Ei).

TR(Fm−1, Fm) ≡
_

(i,j)∈E

Gij(Fm−1, Fm) ∨
_

i∈V

Ei(Fm−1, Fm)

The switch predicates Gij and the time evolution predicates Ei are defined in
terms of three other quantities: Ii is a predicate that tests satisfiability of state
invariant invi at control mode i, predicate gij tests satisfiability of guard ψij ,
and ehi deals with time evolution in control mode i with predecessor mode h.

Let us consider two functions - compensated for sensing delay (csd) and
compensated for actuation delay (cad). These map a set of valuations of the
continuous variables (K) to a set of possible corresponding valuations obtained
after compensating for sensing and actuation delay respectively.
csd(K, i, t1) = {(k1 − k̇1t1, . . . , kn − k̇nt1) | (k̇1, k̇2, . . . k̇n) |= flow(i)}.

cad(K,h, i, t2, t) = {(k1 + (k̇1h − k̇1i)t2 + k̇1it, . . . , kn + (k̇nh − k̇ni)t2 + k̇nit)

| (k̇1h, k̇2h, . . . k̇nh) |= flow(h) and (k̇1i, k̇2i, . . . k̇ni) |= flow(i)}.

Let the current frame be Fm = (Km, tm1 , t
m
2 , t

m, lm) and the previous frame
be Fm−1 = (Km−1, tm−1

1 , tm−1
2 , tm−1, lm−1).

Ii(Fm) ≡ (i = l
m) ∧ ∃K′[K′ ∈ csd(Km

, l
m
, t

m
1) ∧ invi(K

′)]

ehi(Fm−1, Fm) ≡ (i = l
m−1 ∧ i = l

m) ∧Km ∈ cad(Km−1
, h, i, t

m−1
2 , t

m)

gij(Fm−1, Fm) ≡ (i = l
m−1 ∧ j = l

m) ∧ ∃K′[K′ ∈ csd(Km−1
, l

m−1
, t

m−1
1) ∧ ψij(K

′)]

Note that the existential quantification over K ′ in the above identities simply
reduces to a disjunction over possible flow values (see the description of cad and
csd functions).
The switch and evolution predicates can now be defined as follows:

Gij(Fm−1, Fm) ≡ Ii(Fm−1) ∧ Ij(Fm) ∧ gij(Fm−1, Fm) ∧ [Km = updateij(K
m−1)]

Ei(Fm−1, Fm) ≡ Ii(Fm−1) ∧ Ii(Fm) ∧ [
_

h∈pred(i)

ehi(Fm−1, Fm)]

where pred(i) denotes the set of predecessor locations of i.

This completes the definition of the transition predicate.

Let the state to be checked for reachability be (sr, φr). If reachability analysis
is used to check safety properties, then (Sr, φr) would be the error state violating
the safety property, Then, the predicate unsafe(F) ≡ (l = sr∧φr(K)) represents
the error state, that is the target state for reachability analysis.

If d is the number of steps to which we want to check the k-abstraction for
reachability of (sr, φr), we need to check for the satisfiability of

BMCd ≡ Init(F0) ∧

d
^

n=1

(TR(Fn−1, Fn)) ∧ unsafe(Fd).

If BMCd is satisfied, then the target state (sr, φr(K)) is reachable in k-abstraction
and the frames F0, F1, . . . , Fd gives a trace from the start state to the target state.

Further, it is sufficient to do BMC for p steps to prove that a target state
is not reachable where p is the diameter of the transition system. If BMC j

is unsatisfiable for all j ≤ p, then the target state can not be reached in the
transition system. Since the number of reachable states of the transition system
provides an over-estimate of the diameter, it is sufficient (though unrealistic) to
do BMC for number of steps equal to the state space size of the k-abstraction.

Induction: We now describe an induction procedure to guarantee the unreach-
ability of a state in a model. This can be used to prove the satisfaction of a
safety property which can be expressed as a reachability query.

If N steps of BMC are found to be not satisfiable, that is, BMCN is unsat-
isfiable, then we test the satisfiability of

¬unsafe(F0) ∧

N+1∧

k=1

(TR(Fk−1, Fk)) ∧ unsafe(FN+1).

If the above is unsatisfiable, no further bounded model checking is required
and all the states of the model are guaranteed to satisfy the property. Based on
this, we present below a BMC algorithm along with use of induction to check
for safety properties in a LLHA. We define the following predicates to be used
in the algorithm.

N j(Fj) ≡ Init(F0) ∧

j∧

k=1

TR(Fk−1, Fk) and Sj+1(Fj+1) ≡ ¬unsafe(F0)∧
∧j+1

k=1

TR(Fk−1, Fk)

If at any step of the BMC, we find that N j(Fj) is not satisfiable, it means
that there does not exist a path of length j or more, and hence we can terminate
with the output that the model satisfies the safety property.

The bounded model checking predicate and the induction step predicate are
BMCj ≡ N j(Fj) ∧ unsafe(Fj) and INDj ≡ Sj+1(Fj+1) ∧ unsafe(Fj+1)

START

(all paths explored)

 STOP

Y

N

Y
N

NOT REACHABLE

Y

N

Y

N

Emit path
 REACHABLE

NOT REACHABLE
All paths explored

NOT REACHABLE
Emit induction proof

j = 0

SAT (INDj)

SAT (BMCj)

SAT (N j(Fj))

j == MAXSTEPS

j + +

(a) INDBMC module

START

Run INDBMC on the abstraction

REACHABLE
emit path

NOT REACHABLE

NOT REACHABLE
emit induction proof or
all paths exhausted

emit induction proof or
all paths exhausted

Y
N

Not reachable

Not Reachable

Reachable

Reachable

REACHABLE
emit path

PRESENT

NOT PRESENT

 STOP

Run INDBMC on the 0-abstraction

Generate initial k0-abstraction

Use binary seach to find suitable k-abstraction

refuting p.

Set the current abstraction to k-abstraction

k == 0

Check path p in 0-abstraction using BMC

(b) Iterative refinement

Fig. 3. Symbolic reachability analysis based on BMC and induction

The sub-routine INDBMC is presented in Figure 3(a). The technique is sound
and complete due to the results of the preceding section; we present a detailed
discussion of the abstraction-refinement framework in the next section.

Counterexample guided refinement of k-abstractions: We now describe
an automated CEGAR [7] technique presented in Figure 3(b) which exploits the
linear abstraction hierarchy presented in section 3. An initial coarse abstraction
can be arbitrary chosen as k0-abstraction depending on the size of the state
space. In case the target state is not reachable in k0-abstraction, the target state
is also not reachable in the LLHA by Theorem 2. In case the target state is
reachable in LLHA, then BMC will yield a path p0 from the initial state to the
target state in the k0-abstraction. This needs to be validated with respect to
the 0-abstraction. If the abstract path p0 found in k0-abstraction is present in
0-abstraction, then the target state is reachable in the LLHA too. If it is not
present in 0-abstraction, then we select a more finer refinement ki-abstraction
which refutes the abstract spurious path. The same technique is repeated for
progressively finer abstractions until the target states is shown to be unreach-
able or a valid path to the target sate is found. The key components of this
technique are counter-example validation technique and automated refinement
step. The path obtained at any iteration is a satisfying assignment to BMC j ,

it can be validated on 0-abstraction by doing a BMC on BMCj to identify the
first spurious transition. If BMCj has a satisfying assignment for 0-abstraction
too, then the path is valid. The hierarchy of abstractions allows the use of binary
search to find the smallest value of l such that the l-abstraction refutes the path
identified in the coarser abstraction. The complete technique for reachability
analysis of LLHA based on iterative refinement and bounded model checking
is presented as a flowchart in Figure 3(b). The soundness of this technique is
ensured by Theorem 2 and 1. Since, we start with some initial k0-abstraction
and every step involves a progress in refinement, we take at most k0 iterations
before terminating. For the iteration considering k-abstraction, MAXSTEPS
would be the diameter of the k-abstraction. In worst case, this algorithm needs
to consider 0-abstraction which can have a very large diameter and the BMC of
this transition system can be unrealistic, but the completeness of our technique
is guaranteed.

Theorem 5. The iterative abstraction refinement technique presented in Figure
3(b) is sound and complete.

5 Experimental Results

In this section, we present the results of experiments on two case studies. 1 All
experiments were performed on a workstation with Intel Xeon 3.06 GHz pro-
cessors and 4GB RAM. UCLID bit-vector decision procedure [5] was used with
MiniSat as the underlying SAT engine. Any other bit-vector decision procedure
could alternatively be used as the verification engine in our technique.
Automated Highway Control System:

AHS (Figure 4(a)) is an arbiter which ensures that there is no collision be-
tween cars running on a highway by imposing legal speed ranges. This example
has being widely used in literature [9, 14]. We use the description by Jha et al
[14] and extend it to handle inertial delays. The number of cars is used as a
parameter to scale the example.

A set of legal parameter values is:
(All distance measures are in km, time is in hr and all speeds are in km/hr)
α = .002, α′ = .0005, a = 10, rl = 20, b = 30, c = 40, d = 50, e = 60, ru = 70, f = 100

ε = 10−5, g = 10−3, h = 5 × 10−4, δg = 5 × 10−4, δh = 5 × 10−5 and P = .01.

Correspondingly, quantization factors are ∆ = 5 × 10−5 and Γ = 5 × 10−5.

The safety property to be verified was that the control mode is never the “er-
ror” mode. Figure 4(b) compares the runtime of our technique and that of Phaver
on this example for different number of cars. It shows that our approach is more
scalable than Phaver. Our technique could handle large instances with 150 cars in
less than 2 minutes while Phaver took more than 10 hours to analyze model with
15 cars. For this example, we did not do any abstraction. Γ -abstraction for AHS
with even large number of cars could be easily handled by our BMC+induction
technique and did not necessitate any abstraction-refinement iteration as shown
by the runtime plot in Figure 4(b). Further, the bulk of the run-time taken by

1 A complete set of UCLID, Phaver or HSolver modules as well as data pertaining to
run-time and memory requirements can be obtained from the first author’s webpage.

Recovery

Cruise Start Error

ẋ4 = 0

ẋ1 ∈ [a, f]
ẋ2 ∈ [a, f]
ẋ3 ∈ [a, f]
ẋ4 ∈ [a, f]

x3 − x4 ≤ α

x1 − x2 ≥ α

x1 − x2 ≤ α

x3 − x4 ≥ α

x2 − x3 ≤ α

x2 − x3 ≥ α

(x1, x2)

ẋ1 ∈ [b, c]
ẋ2 ∈ [d, e]
ẋ1 = ru
ẋ1 = ru

Recovery (x2, x3)

ẋ1 = rl
ẋ2 ∈ [b, c]
ẋ3 ∈ [d, e]
ẋ1 = ru

Recovery (x3, x4)

ẋ1 = rl
ẋ2 = rl
ẋ3 ∈ [b, c]
ẋ4 ∈ [d, e]

x1 − x2 ≤ α′

x2 − x3 ≤ α′

x3 − x4 ≤ α′

ẋ1 = 0
ẋ2 = 0
ẋ3 = 0

(a) Model

 0.01

 0.1

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14

R
un

tim
e

Number of Cars

Runtime Plot
Our technique (total)

Phaver
Our technique SAT time

(b) Runtime plot

Fig. 4. Automated Highway Control System with 4 vehicles

our technique is used up in building the model. The time taken to solve the cor-
responding SAT problems for BMC and Induction are a very small percentage
of total run time.

Air Traffic Alert and Collision Avoidance System:

TCAS is a predictive warning system used for avoiding collision of aircrafts
using a sequence of preventive and corrective resolution advisories. The model
for TCAS resolution used here is similar to the one used by Pappas et al [16].
We make a few changes to the model to make it more realistic. The TCAS
specification [6] uses expected time to collision for detecting collision threats and
not distance between aircrafts used in Pappas et al example [16]. The max in the
constraint avoids division by zero. The k/xr term ensures that slow approaches
are avoided by triggering threat if xr is small. This makes the problem harder
since these invariants are non-linear. Hence, LHA tools like Phaver can not be
used for this example.We allow the input for speed of aircrafts to be an interval. It
is realistic to expect the speed of aircrafts to be in a range rather than assuming
them to be a constant input. We also allow inertial delays in actuation and
sensing.

The parameters used in the experiment were taken from the specifications
in TCAS 2, Version 7 documentation [10] and TCAS-201 simulator [19] speci-
fications. The time-zone considered for advisory is 30− 120 seconds (tnear and
tfar, respectively). The distance d is taken to be 15 nautical miles (that is, 27.78
kms.). The range of speed for aircraft is allowed to range between 100 knots to
510 knots (nearly 200 km/hr to 1000 km/hr). It may be noted that the maximum

COMMON DYNAMICS

 RIGHT

CRUISE
LEFT

STRAIGHT
d/(v2 × sin(∆φ)) ≤ t

∧

(xr − k/xr)/max(ε, ẋr) ≤ tnear

(yr − k/yr)/max(ε, ẏr) ≤ tnear

∧

(xr − k/xr)/max(ε, ẋr) > tfar

∨

(yr − k/yr)/max(ε, ẏr) > tfar

(xr − k/xr)/max(ε, ẋr) ≥ tnear

(yr − k/yr)/max(ε, ẏr) ≥ tnear

∧

d/(v1 × sin(∆φ)) ≥ t

d/(v2 × sin(∆φ)) ≥ t

∨

(xr − k/xr)/max(ε, ẋr) ≤ tfar

∧

(yr − k/yr)/max(ε, ẏr) ≤ tfar

x′

r = xrcos∆φ + yrsin∆φ
y′

r = −xrsin∆φ + yrcos∆φ

t ≤ 0

t′ = 0

x′

r = xrcos∆φ − yrsin∆φ
y′

r = xrsin∆φ + yrcos∆φ
t′ = t

y′

r = −xrsin∆φ + yrcos∆φ

t′ = 0

x′

r = xrcos∆φ + yrsin∆φ

t′ = t

x′

r = xrcos∆φ − yrsin∆φ

y′

r = xrsin∆φ + yrcos∆φ

t ≥ 0

ẋr = −v1 + v2 ∗ cosφr

ẏr = v2 ∗ sinφr

φ̇r = 0

ṫ = 0

ṫ = 0

ṫ = 1

ṫ = −1

d/(v1 × sin(∆φ)) ≤ t

Fig. 5. Air Traffic Alert and Collision Avoidance System

speed of Airbus 380 is Mach 0.88 (nearly 505 knots). The LLHA parameters used
in our example are 128µs ≤ g, h ≤ 256µs and ε = 2−15 nautical miles [19].

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16

Lo
g

of
 th

e
ru

nt
im

e(
se

co
nd

s)
 to

 b
as

e
2

Level of abstraction (k)

Plot for our technique with different levels of abstraction

Runtime(log T) for 45 degree
Number of SAT clauses/250000

(a) ∆φ = 45 degree

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16

Lo
g

of
 th

e
ru

nt
im

e(
se

co
nd

s)
 to

 b
as

e
2

Level of abstraction (k)

Plot for our technique with different levels of abstraction

Runtime(log T) for 60 degree
Number of SAT clauses/250000

(b) ∆φ = 60 degree

Fig. 6. Plot comparing runtimes of our technique for different levels of abstraction

Phaver cannot handle this example due to non-linear invariants and guards.
We modeled TCAS example using same LLHA parameter values in HSolver [8].
It did not terminate in 180 minutes with any answer. This further stresses the
hardness of this example and underlines the significance of our technique’s scala-
bility. Figure 6 depicts how the run-time of our tool and state space size vary for
different levels of abstraction (the x-axis gives the value of k for k-abstraction).

There is an initial increase due to addition of extra flows but for larger ab-
stractions, the time taken is much less compared to the actual model. Since no
refinement is needed for any value of k, the points in the graph represent run-
time for only a particular abstraction level. The analysis of the 16-abstraction of
the original model allows us to conclude in less than 20 seconds that the model
is safe, about 10 times faster than analyzing the original model (0-abstraction).

References

1. M. Agrawal, F. Stephan, P. S. Thiagarajan, and S. Yang. Behavioural approxi-
mations for restricted linear differential hybrid automata. In J. P. Hespanha and
A. Tiwari, editors, HSCC, volume 3927 of LNCS, pages 4–18. Springer, 2006.

2. M. Agrawal and P. S. Thiagarajan. Lazy rectangular hybrid automata. In R. Alur
and G. J. Pappas, editors, HSCC, volume 2993 of LNCS, pages 1–15. Springer,
2004.

3. M. Agrawal and P. S. Thiagarajan. The discrete time behavior of lazy linear hybrid
automata. In M. Morari and L. Thiele, editors, HSCC, volume 3414 of LNCS, pages
55–69. Springer, 2005.

4. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
Hybrid Systems I, LNCS 736, pages 209–229, 1992.

5. R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and B. Brady.
Deciding bit-vector arithmetic with abstraction. In Proceedings of TACAS 2007,
volume 4424 of LNCS, pages 358–372. Springer Verlang, 2007.

6. W. Chan, R. Anderson, P. Beame, and D. Notkin. Combining constraint solving
and symbolic model checking for a class of a systems with non-linear constraints.
In CAV, pages 316–327, 1997.

7. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV ’00, pages 154–169, London, UK, 2000. Springer-
Verlag.

8. W. Damm, G. Pinto, and S. Ratschan. Guaranteed termination in the verification
of LTL properties of non-linear robust discrete time hybrid systems. In ATVA,
pages 99–113, 2005.

9. A. Deshpande, D. N. Godbole, A. G, and P. Varaiya. Design and evaluation tools
for automated highway systems. In Hybrid Systems, pages 138–148, 1995.

10. Federal Aviation Administration. Introduction to TCAS II Version 7, November,
2000. http://www.arinc.com/downloads/tcas/tcas.pdf.

11. G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In
HSCC, pages 258–273, 2005.

12. T. A. Henzinger and P. W. Kopke. Discrete-time control for rectangular hybrid
automata. TCS, 221(1–2):369–392, 1999.

13. P.-H. Ho. Automatic analysis of hybrid systems. PhD thesis, Cornell Univ., 1995.
14. S. K. Jha, B. H. Krogh, J. Weimer, and E. M. Clarke. Iterative relaxation abstrac-

tion (IRA) for linear hybrid automata. In HSCC’07, LNCS, 2007.
15. C. Livadas, J. Lygeros, and N. A. Lynch. High-level modeling and analysis of tcas.

In RTSS ’99, page 115, Washington, DC, USA, 1999. IEEE Computer Society.
16. G. Pappas, C. Tomlin, and S. Sastry. Conflict resolution for multi-agent hybrid

systems. In CDC, pages 1184–1189, 1996.
17. B. Potocnik, A. Bemporad, F. Torrisi, G. Music, and B. Zupancic. Hysdel Modeling

and Simulation of Hybrid Dynamical Systems. In MATHMOD Conference, Vienna,
Austria, Feb. 2003.

18. S. Ratschan and Z. She. Constraints for continuous reachability in the verification
of hybrid systems. In AISC, pages 196–210, 2006.

19. TCAS201 Specification Datasheet. http://www.aeroflex.com/products/avionics/rf/
datasheets/tcas201.pdf.

20. A. Tiwari. Approximate reachability for linear systems. In HSCC, volume 2623 of
LNCS, pages 514–525. Springer, Apr. 2003.

21. A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In C. Tomlin
and M. R. Greenstreet, editors, HSCC, volume 2289 of LNCS, pages 465–478.
Springer, 2002.

APPENDIX

Constant Differential Inclusion We provide an intuitive explanation of how
constant differential inclusion of uniform linear predicates [13] are used in lit-
erature to model linear flows for reachability analysis. Such a transformation is
sufficient for determining reachability as we do not reason about the time taken
to reach a configuration.

This is illustrated in Figure 7. The convex polygon represents the rate of
change of variables (x, y) such that is (rx, ry) is a permitted flow, then (rxt, ryt)
lies in the interior of the convex polygon, where t is one time unit.. The polygon
is convex as we only consider convex linear flows. Also, the polygon is constant
and does not change with change in configurations (x, y) as the flow condition is
uniform and does not depend on (x, y). The configurations (x, y) reachable in k
time units would be (x0 + k(rxt), y0 + k(ryt)), where (x0, y0) is initial configura-
tion, (rxt, ryt) is a point in the convex polygon. Thus, the two rays with (x0, y0)
as origin and touching the angular extremes of the convex polygon represent
the possible reachable configurations. If we form a rectangle using the vertices
of the polygon that touch the rays, the set of configurations reachable for flow
values lying in the rectangle is same as the previously reachable sets. The bound
constraints arising from the rectangle can be, thus, used in place of the uniform
linear predicate for the purpose of reachability analysis.

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

Convex Flow

Reachable Configurations (X, Y)

(Uniform Linear)

X

Equivalent Constant Differential Inclusion

Y

(Lx ≤ Ẋ ≤ Ux,Ly ≤ Ẏ ≤ Uy)

(∪iAix + Biy ≤ Ci)

X0

Y0

Fig. 7. The flows given as uniform convex linear predicates can be represented using
constant differential inclusion for the purpose of reachability.

