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Abstract—Transient faults are a major concern in today’s
deep sub-micron semiconductor technology. These faults are rare
but they have been known to cause catastrophic system-level
failures. Transient errors often occur due to physical effects on
deployed systems and hence, diagnosis of transient errors must
be performed over manufactured chips or systems assembled
from black-box components where arbitrary instrumentation of
the system is not possible and hence, the system state is only
partially observable. Further, these systems are often composed of
components that are third party IP which further adds opaque-
ness to the system. In this paper, we propose a probabilistic
approach to localize transient faults in space and time for such
partially observable systems. From a set of correct traces and
a failure trace, we seek to locate the faulty component and the
cycle of operation at which the fault occurred. Our technique uses
correct system traces over monitored components of the system
to learn a dynamic Bayesian network (DBN) summarizing the
temporal dependencies across the monitored components. This
DBN is augmented with different error hypotheses allowed by
the fault model. The most probable explanation (MPE) among
these hypotheses corresponds to the most likely location of the
error. We evaluated the effectiveness of our technique on a set
of ISCAS89 benchmarks and a router design used in on-chip
networks in a multi-core design.

I. INTRODUCTION

Post-silicon validation involves exercising a manufactured
chip in an actual application environment to validate its be-
havior under various operating conditions. Dramatic increase
in design complexity in recent years is making this activity
a very expensive proposition. For instance, Intel reported that
in 2005 the manpower assigned to design was a third of that
assigned to validation [13]. In addition, this validation process
can consume 35% of chip development time on average [1].
Bugs are difficult to diagnose in the post-silicon environment
due to limited observability, reproducibility and dependence
on physical parameters. Electrical bugs — those that occur due
to unpredictable electrical conditions — are particularly chal-
lenging since they may only manifest under certain operating
conditions such as a high clock frequency in certain logic
states of the system [9]. Unpredictable electrical bugs are a
growing concern in today’s deep sub-micron semiconductor
technology'. The difficulty in diagnosing errors can easily lead
to time-to-market slips and silicon re-spins.

!Intel and Matsushita started mass producing 45nm chips in late 2007 and
AMD started production of 45nm chips in 2008.

The diagnosis problem is made harder by the use of
third-party designs in assembled systems such as system-
on-a-chip (SoC) designs. These third-party designs, called
intellectual property (IP) blocks, are usually only provided
as pre-synthesized components, in order to protect IP. This
means a validation engineer needs to debug in a grey-box
environment in which complete design of the system is not
available. The internal operation of some of the components
might be unknown and only interface signals are available for
observation. If an IP block has already undergone rigorous
verification audit, it is typically free of functional errors and
manufacturing defects (hard errors). However, an integrated
environment can still cause errors on individual components
such as a critical path (speed-path) timing violation. These
errors manifest themselves as a value arriving at some state-
holding element at the wrong time such that it could not be
latched. The effect is mostly transient, that is, it only lasts for
a cycle, since the error is path dependent and it occurs only
under certain operating conditions. This also means very often
only a single error trace is available for diagnosis.

In this paper, we consider the problem of debugging tran-
sient errors using a set of correct traces obtained from a grey-
box system and a single error trace. Our goal is to localize
the error both in time and space, that is, the clock cycle in
which this error happened and the part of the system where
the error happened. We propose a new diagnosis framework
which learns the behavior of the system from correct traces
over the interface signals. The DBN is then augmented with
a fault model for transient errors and the most probable
explanation (MPE) of the error trace in the augmented model
provides the diagnosis. While consistency-based [19], [5] and
probabilistic diagnosis [3], [17] techniques have been studied
in literature, our technique is an amalgam of the consistency
and probabilistic techniques to diagnose transient errors in
the grey-box scenario where the system is only partially
observable. The main novel contributions made in this paper
are as follows -

1) The use of dynamic Bayesian networks to learn a
probabilistic abstraction of behavior (transition relation)
of a system from its correct traces.

2) Fault model augmented DBNs which allow us to merge
consistency based diagnosis with probabilistic tech-
niques.



II. RELATED WORK

A number of diagnosis approaches have been proposed in
literature. As observed by Console et al [4], these approaches
either require models that describe the correct behavior of the
system or they need models for the abnormal (faulty) behavior.
We discuss some of these techniques below and contrast it with
our approach.

Consistency-based Methods. If a system can be described
using a set of constraints, then diagnosis can be accomplished
by identifying the set (often minimal) of constraints that must
be excluded in order that the remaining constraints are con-
sistent with observations. This is the traditional consistency-
based reasoning approach [19], [5], [16]. While this approach
does not require knowledge of how a component of the system
fails (a fault model), it does require the complete specification
of the correct system. Consistency based approaches have been
recently used to debug permanent faults in circuits [21]. More
recently, the advance in satisfiability solving has refuelled
interest in consistency-based reasoning approaches [21]. The
correct circuit design is specified as a set of constraints in
propositional logic and SAT solvers are used to detect the con-
straints that need to be removed or replaced in order to make
them consistent with observations. These constraints which
need to be removed correspond to the faulty components. our
approach is better suited for localizing transient errors in grey
box systems due to following reasons.

1) Third party IPs make it impossible to write complete
logical description for the system (usual provided as
netlist in SAT based techniques). Instead, we learn the
transition relation underlying the system as a Dynamic
Bayesian Network using correct traces of the chip. This
enables grey-box diagnosis.

2) Transient errors produce single or few error traces. So,
accuracy of consistency based diagnosis would be very
low. SAT based approaches will have a large number of
possible diagnosis if only few error traces are provided.

3) The SAT-based approaches can not rank different di-
agnoses. If the number of reported diagnoses is large,
reporting all diagnoses is less helpful to a debugging
engineer than reporting the set of diagnoses ranked by
their likelihood.

Abduction-based methods. The other end of the spectrum is
the abductive reasoning approach where a set of hypotheses
of abnormal behavior must be introduced to explain the
observations. The abductive approach [3], [17] requires a
language in which a family of possible explanations can be
expressed. The knowledge about failure modes of the system
provided by experts are expressed in this language. Abduction
works by entailment by identifying all explanations that entail
the observation. However, it does not use any model of the
correct functioning of the system. We learn a probabilistic
model of the correct system and hence, our approach is not
entirely abductive. Poole’s work [18] on probabilistic Horn

abduction proposed a new framework which incorporates both
Prolog and Bayesian networks as special cases. A Prolog-like
language is used to specify the possible fault models and each
hypothesis is associated with some probability. The task of
diagnosis is then accomplished using abduction. In contrast
to this work, we do not assume any probability distribution
over the different possible explanations; instead the underlying
model of the system itself is represented as a probabilistic
model learnt using the good behaviors of the system.

The abductive approaches are not suitable for debugging
transient errors in grey box circuits because of the following
limitations.

1) Fault models for transient errors can be provided by
experts but these fault models are very specific muta-
tions such as bit-flip for a cycle. We do not have a
prior information about likelihood of faults in different
components. Instead, we rely on the correct traces to
derive the likelihood of possible errors.

2) The system to be diagnosed is usually not a black
box and we have partial information about the system
design as well as access to traces over observed interface
signals.

3) Since transient errors are rare, we have abundance of
correct traces. Our technique exploits this to learn the
DBN describing the correct functioning of the system
from the correct traces.

Bayesian networks [14] have been widely used as a prob-
abilistic model of a system for diagnosis. Many of these
approaches are anomaly detection techniques. Our approach is
based on finding most probable explanation (MPE) of a DBN
augmented with fault model and hence, it is not an anomaly
detection technique. We use dynamic Bayesian networks to
learn the temporal evolution of the system using its correct
traces. This is in contrast with Bayesian networks which only
represent the interdependence among the components. The key
motivation for using dynamic Bayesian networks is to learn
a probabilistic abstraction of the underlying state machine of
the circuit to be diagnosed. Further, fault models for transient
errors can be easily incorporated in DBNs.

III. DIAGNOSIS APPROACH

The key insight used in our technique is to use the abun-
dance of correct traces of the circuit to localize the fault
causing the single error trace.

Though the system description of the circuit is not com-
pletely available, it is possible to run tests on the circuit to
generate a number of traces of the system which are correct,
i.e., the system does not fail on those tests. This can be used
to learn a probabilistic description of the correct behavior of
the circuit. Secondly, it is possible to use expert guidance to
synthesize accurate fault models for the transient errors. These
fault models define the space of possible hypothesis which,
together with the learnt probabilistic description of the circuit,
can explain the error trace.

Two sources of knowledge can be exploited:



« partial knowledge about correct functioning of the system
available as the probabilistic description learnt from error
traces and

« the expert knowledge available as fault models.

The diagnosis of transient errors in circuits can be best ad-
dressed using an amalgam of consistency-based reasoning (to
exploit the learnt model of the correct system) and abduction
(to exploit the availability of fault models).

The probabilistic model representation used by our tech-
nique is Dynamic Bayesian Networks (DBN). An DBN is
a Bayesian network that represents a sequence of variables.
These sequences could be time-series (for example in speech
recognition) or sequences of symbols (for example protein
sequences). The hidden Markov model and the Kalman Filter
can be considered as the most simple dynamic Bayesian net-
works. A detailed discussion of Dyanamic Bayesian Networks
is presented in Murphy’s PhD thesis [12].

We now sketch our approach in rest of the section and
identify the key components of our technique. In the next
section, we describe these components in detail.

A. Knowledge Representation

We use dynamic Bayesian networks (DBN) to learn the
temporal behavior of the circuit using the correct simulation
traces, and thus, construct a probabilistic model describing
the correct operation of the circuit. In addition, our approach
makes use of a fault model that specifies how the normal
operation of the circuit is modified in the event of an error.
The fault model is used to construct a new DBN that is
augmented with information on how the probabilistic depen-
dencies change in the presence of a fault. In principle, our
approach can work with any fault model. However, the focus
of this paper is transient errors caused by combinations of
electrical and logical conditions. We identify two examples
of transient faults and observe that they can be modeled as a
bit-flip.

e Delay fault: This fault is used to model a signal that
changes its value at an incorrect time. In a sequential
(stateful) circuit, it can be used to model a value being
latched at the wrong time. This manifests as the value
of the latch being flipped. This fault is common on
speedpaths (critical paths) in a circuit when the clock
speed is high. For our context, it sufficies to model a
delay fault in terms of its effect as a transient bit flip.

o Single event upset (SEU): In this fault, a state-holding
element latches the opposite value of what it is supposed
to get during a single cycle of circuit operation. Given
a sequential circuit, this transient error might change the
next state at a given time step, thus causing the resulting
trace to diverge from the correct trace after this step.
We do not have the complete description of circuit for
diagnosis, but if we did, the location of the SEU would
be the first point of divergence from the expected (correct)
trace. Diagnosing the locations of single event upset can
be used to make the system more robust by hardening
these locations logically or physically.

Our approach can also handle transient errors with multi-
ple bit flips at the expense of increased run-time for DBN
augmentation and inference. In general, any fault model can
be used to augment DBNs but more complicated fault models
would increase the computational cost for computing the most
probable explanation. We use a simple fault model of bit-flip
to explain our approach.

Figure 1 shows the transition function of a simple circuit
with state variables X7, Xo, X3. The primed state variables
represent the next state value of the variables. The logical
transition function is represented using a 0/1 table in Figure 1.
The entry for X; X5 = 00 and X| = 0 is 1 means that X,
is 0 in next state if X; and X, are O in current state. The
gray box indicates that we cannot observe the variable Xj.
Figure 2 shows the result after we apply the structure learning
algorithm and update the parameters given a set of traces
{(z3,2}), (23,22), ...} and apply smoothening. Smoothening
is done by assuming an uniform Dirichlet prior distribution
on the conditional probabilities to avoid cases where valid
transitions are missing from the training data. In our example,
P(X} = 1]X; = 0) is 0.01 because the actual circuit can
not have such a transition in any correct trace and hence,
none of the learning traces would have X} = 1,X; = 0.
But smoothening would assign some small probability to this
since it might be the case that this transition was valid and
missing from the set of correct traces used to learn the DBN.

X —~X2' 0 1
e =
01 1 0

10 0 1
)
X3 X3 0 1
()
1 0 1

Fig. 1. Original Transition Function

X, X’ 0 1
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Fig. 2. Probabilistic Abstraction of the Original Transition Function as a
DBN

With the learnt DBN as a probabilistic description of the
transition relation, we can now extend it with a fault model
and set up for diagnosis. Our fault model is the following. We
say that at any cycle, if a fault occurs to a latch X, X takes
the opposite value of what it is supposed to get. Suppose in
the original sequential circuit, = dx(7(X),i(X)), where
dx is the deterministic next state update for X, II(X) are the



parents of X (the set of latches that feeds X), and I(X) C I
is the set of inputs that feeds X (i(X) is an evaluation on
I(X)). Under this fault model, 2’ = % (7(X),i(X),ex i),
where ex ; = 1 means there is a fault at X at time .

Since the learnt DBN is effectively a probabilistic abstract
transition function over the observed latches, the effect of a
fault at latch X is that X takes the complement value with the
original probability. Formally, given a node X and its parents
II(X), we augment the dependence of X by a binary error
node E'x by adding an edge from Ex to X, such that

P(X =1|n(X), Ex = 1) = P(X = 0|m(X))
P(X =1|m(X), Ex = 0) = P(X = 1|r(X))
P(X = 0[r(X), Ex = 1) = P(X = 1|r(X))
P(X = 0[n(X), Ex = 0) = P(X = 0|(X))

Figure 3 shows the augmented DBN for the same example
in Figure 2.
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Fig. 3. Augmented DBN with Error Nodes

B. Inference

The fault models are used to define a space of hypothesis
which can be used to explain the observed error trace. Infer-
ence step in our diagnosis technique requires us to compute
the probability of observing the error trace under different
hypotheses. We do this by augmenting the learnt probabilistic
model (DBN) with the fault model by suitably modifying the
conditional probability tables of the DBN and then computing
the likelihood of producing the error trace.The error hypothesis
which is most likely to produce the error trace is the most
probable explanation of the error.

In the above example, the fault could be in any of the two
variables at some clock cycle. Figure 4 shows the unrolled
DBN given an error trace and a fault location hypothesis. The
fault location hypothesis which is most likely to produce the
error trace is the MPE and is reported as the most likely fault
location.

IV. DBN LEARNING AND INFERENCE

A sequential circuit C, is formally modeled as a tuple
(I,0,L,J,p), where I is the set of input signals, O is the set
of output signals, L is the set of state variables (latches) that
induce the state space 2%, § : 27 x 2L — 2L is the next state

Fig. 4. MPE Evidenced on an Error Trace and a Location Hypothesis

function of Cj, p is the output function. A sequential circuit
is usually initialized to some state s;. If |§(s, )| = 1 Vs € 2¢
and i € 27, then C is deterministic. In this paper, we consider
deterministic circuits.

Assume we can only observe L, C L latches. A trace 7
of length [ is then a finite sequence of states sg, S1,.-.,S—1,
where s, € 2Le. A trace can be a correct trace or an error
trace.

A Bayesian network (BN) B is a tuple (G,0). G is a
directed acyclic graph (DAG) . A node X in G is a random
variable. An edge in G from X, to X, indicates X} is (po-
tentially) conditionally dependent on X,. In our framework,
X is a binary variable € L. 6 is the set of parameters that
defines the conditional probabilities amongst variables.

Given a set of correct traces over the observed variables
L,, we learn a DBN using these traces. The DBN is over the
observed variables and structural learning is done to determine
the dependence edges in the DBN.

A. Structure Learning

Structure learning is the problem of finding the Bayesian
network B that best fits some given data D. This is commonly
done by choosing the free parameters ¢ that maximizes the
posterior probability P(0|D). P(0|D) can be approximated
by the Bayesian Information Criterion (BIC) [20] or the
likelihood-equivalent Bayesian Dirichlet metrics (BDe) [8]. In
BIC,

log(P(8]D)) ~ Pliogo) )

where L(D|0) is the log-likelihood of the observation in the
estimated model. The regularization term f‘gilog(|D|) in BIC
lessons the chance of overfitting.

We use REVEAL [10] with BIC for learning the DBN
structure. The REVerse Engineering ALgorithm (REVEAL)
works by using the mutual information measures to learn
the structure of the dynamic Bayesian network. The mutual

information M (X,Y") between variables X and Y is defined
as

L(DI#) -

M(X,Y)=H(X)+ H(Y) - H(X,Y) )

More details on learning DBN can be found in [6], [10], [12].

Once the structure is learnt, we can then update the pa-
rameters 6 of the network. We assume a uniform Dirichlet
prior distribution [7] on the conditional probabilities to avoid
cases where valid transitions are missing from the training
data. This essentially assigns a small non-zero probability to



the unseen transitions. For all the observed nodes, we can
update the conditional probabilities as follows,

Ny n(x) + Qg m(x)
Nr(x) + an(x)

P(z|n(X)) = 3)
where x is an evaluation of variable X, 7(X) is an evaluation
on the parents II1(X), N, ~(x) is the configuration count for
(z,m(X)), and v, r(x) is the positive hyper-parameter that
determines the strength of the regularization.

Once the DBN representing the correct traces is constructed,
we modify it to augment it with the fault model. The key
idea is to introduce new nodes in the DBN which are binary
domain decision variables for whether a particular location and
time-step is faulty or not. The mutation caused by the fault
is reflected by suitably modifying the probability table of the
DBN. For a single bit-flip fault model, the effect of a transient
error at latch ¢ is ¢ will take the opposite of its initial value.

B. Inference and Diagnosis

Given the augmented DBN with error nodes {Ex} and
an error trace 7 on the observable variables, the diagnosis
problem is an instance of statistical inference of finding the
Most Probable Explanation (MPE). MPE is the problem of
finding the instantiation of the Bayesian network that has the
highest probability given the observed evidence.

P(T\{ex})P({ex})}
P(r)

That is, we want to find an assignment to the error nodes such
that the posterior probability is maximized. Given an error
trace 7 with length &, we first unroll the DBN k£ —1 times and
then ask for the MPE. For a large graph, MPE computation
can be expensive. In fact, MPE is NP-hard [11].

Computing MPE is relatively inexpensive for the SEU
model. For each fault location (latch/cycle pair) hypothesis
X, ty, we can simply compute the probability of the obser-
vations under this hypothesis, denoted as

P(EXh,th = 1,{EX7,5 = O‘X #* Xp,t # th},T).

We assume the same P(Ey ; = 1) for all possible fault loca-
tions. This is a parameter to the algorithm. Let {Y7,...,Y,}
be the set of random variables (including the error nodes) in
the unrolled network. For each error hypothesis, we calculate
this probability

argmaz {P({ex}|7) = “4)

n

vyn) = [[ Plyilr(¥2) (5)

=1

P(y17"'

The MPE then corresponds to the hypothesis with the largest
P(y1,. . Yn)-

V. EXPERIMENTAL RESULTS

We evaluated our diagnosis approach on a set of 10 IS-
CASB89 circuits and a router [15] used in on-chip networks in
a multi-core design.

The set of 10 ISCAS89 benchmarks [2] included 8 bench-
marks which are controllers and hence, DBN can be used to

T T
Components observed
9 XXX

7 =
5 m—

Number of Errors Correctly Diagnosed

Percentage of Errors Correctly Diagnosed

Top 2

Diagnoses

Fig. 6. Accuracy of diagnosis with number of DBN nodes

learn probabilistic abstraction of the underlying state-machine
of the controller. A correct simulation trace of length 200 was
used to learn the DBN. This trace was observed by simulat-
ing the circuit using random input vectors. To evaluate our
approach, we performed a set of fault injection experiments.

In a single fault injection experiment on a benchmark, we
randomly selected 5 latches for constructing the DBN. Single
bit-flip fault was injected at one of these latches in exactly
one clock cycle. An error trace of length 100 was obtained
from the faulty circuit. We repeated this 25 times by inserting
faults at each of the 5 latches - and randomly selecting 5
different clock cycles to insert the fault for each latch. So, we
had 25 error traces from each fault injection experiment on a
benchmark.

Further, we repeated the fault injection experiment on each
benchmark 10 times by randomly selecting 5 different latches.
Thus, we had 250 error traces for each of the 10 benchmarks.

Figure 5(a) shows for each of the 10 benchmarks, the ac-
curacy with which our approach identified the injected faults.
Our tool outputs a ranked list of fault locations (latch/cycle
pair). Figure 5(a) shows, for each of the 10 benchmarks, how
the injected faults are ranked by the tool. For example, for the
benchmark s444, 155 of the 250 injected faults were ranked
1, 17 faults were ranked 2, 13 were ranked 3 and 36 were
ranked between 4 and 10.

Figure 5(b) shows data aggregated over all the 10 bench-
marks. From this plot, we see that the accuracy of the
diagnoses increases only 5.7% while going from considering
the top 5 ranked diagnoses to the top 10 diagnoses.

We also did a case study on a chip multiprocessor (CMP)
router which is described in [15]. We inserted errors in 5
different latches in the input-controller component of the router
out of a total of over 100 latches. Each error trace was 56
cycles long and the errors were inserted at 4 different time
steps for each location. Thus, a total of 20 error traces needed
to be diagnosed. For building the DBN, we chose 5,7 or 9
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components to build a DBN which included the component
with failure. The training data for the DBNs was a correct
trace of length 232. The results are presented in Figure 6. The
top 5 diagnoses output by the tool included over 50% of the
injected faults. Prior information about the error can be used
to construct DBNs over smaller number of components and
this example illustrates that our technique can exploit the prior
knowledge. It yields higher accuracy with fewer components.

VI. CONCLUSION

In this paper, we have proposed a practical approach to
diagnose transient error using dynamic Bayesian networks to
learn and represent the model of partially observable circuit
system. Our error localization technique can point to the
pair of observed system variable and time-cycle to which
the error first propagates to. Our work is essentially a first
step in combining consistency and probabilistic approaches to
diagnose difficult to reproduce errors occurring in deployed
systems which have only limited observability.
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