
Journal of Automated Reasoning
https://doi.org/10.1007/s10817-018-9499-8

Explaining AI Decisions Using Efficient Methods for Learning
Sparse Boolean Formulae

Susmit Jha1 · Tuhin Sahai2 · Vasumathi Raman2 · Alessandro Pinto2 ·
Michael Francis2

Received: 11 November 2018 / Accepted: 17 November 2018
© Springer Nature B.V. 2018

Abstract
In this paper, we consider the problem of learning Boolean formulae from examples obtained
by actively querying an oracle that can label these examples as either positive or negative.
This problem has received attention in both machine learning as well as formal methods
communities, and it has been shown to have exponential worst-case complexity in the gen-
eral case as well as for many restrictions. In this paper, we focus on learning sparse Boolean
formulae which depend on only a small (but unknown) subset of the overall vocabulary
of atomic propositions. We propose two algorithms—first, based on binary search in the
Hamming space, and the second, based on random walk on the Boolean hypercube, to learn
these sparse Boolean formulae with a given confidence. This assumption of sparsity is moti-
vated by the problem of mining explanations for decisions made by artificially intelligent
(AI) algorithms, where the explanation of individual decisions may depend on a small but
unknown subset of all the inputs to the algorithm.We demonstrate the use of these algorithms
in automatically generating explanations of these decisions. These explanations will make
intelligent systems more understandable and accountable to human users, facilitate easier
audits and provide diagnostic information in the case of failure. The proposed approach
treats the AI algorithm as a black-box oracle; hence, it is broadly applicable and agnostic to
the specific AI algorithm. We show that the number of examples needed for both proposed
algorithms only grows logarithmically with the size of the vocabulary of atomic propositions.
We illustrate the practical effectiveness of our approach on a diverse set of case studies.

Keywords Explainable AI · Boolean formula learning · Machine learning ·
Formal methods · Interpretable AI · Sparse learning

B Susmit Jha
jha@csl.sri.com

1 SRI International, Menlo Park, USA

2 United Technologies Research Center, Berkeley, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-018-9499-8&domain=pdf
http://orcid.org/0000-0001-5983-9095

S. Jha et al.

1 Introduction

The rapid integration of robots and other intelligent agents into our industrial and social
infrastructure has created an immediate need for establishing trust between these agents and
their human users. The ability of human-understandable self-explanation is fundamental to
establishing such trust. The long-term acceptance of AI will depend critically on its ability
to explain its actions, provide reasoning behind its decisions, and furnish diagnostic infor-
mation in case of failures. This is particularly true for systems with close human–machine
coordination such as self-driving cars, and care-giving and surgical robots. Decision-making
and planning algorithms central to the operation of these systems currently lack the ability
to explain the choices and decisions that they make. This is particularly problematic when
the results returned by these algorithms are counter-intuitive. In such cases, it is particularly
important that intelligent agents become capable of responding to inquiries from human
users. The resulting explanations must be human-understandable, and hence must use terms
in a pre-defined, user-specified vocabulary. For example, when riding in an autonomous taxi,
we might expect to query the AI driver using questions similar to those we would ask a
human driver, such as “why did we not take the Bay Bridge”, and receive a response such
as “there is too much traffic on the bridge” or “there is an accident on the ramp leading to
the bridge or in the middle lane of the bridge.” These explanations are essentially formulae
in propositional logic formed by combining the atomic propositions corresponding to the
user-observable system and the environment states using Boolean connectives.

Robots rely on a perception pipeline to observe the environment, orient themselves, decide
what action to take, and then act accordingly. This repeated sequence of observe-orient-
decide-act is also called OODA loop [31,39] in literature on autonomous and intelligent
systems. Even though the decisions of intelligent agents are the consequence of algorithmic
processing of perceived system and environment states, the straight-forward approach of
reviewing this processing is not practical. There are three key reasons for this. First, AI
algorithms use internal states and intermediate variables to make decisions, which may not
be observable or interpretable by a typical user. For example, reviewing decisions made by
the A* planning algorithm [27] could reveal that a particular state was never considered in the
priority queue. But this is not human-interpretable, because a usermay not be familiarwith the
details of howA*works. Second, the efficiency and effectiveness ofmanyAI algorithms relies
on their ability to intelligently search for optimal decisions without deducing information not
needed to accomplish the task, but some user inquiries may require information that was not
inferred during the original execution of the algorithm. For example, a state may never be
included in the queue of a heuristic search algorithm like A* because either it is unreachable
or it has very high cost. Thus, the ability to explain why this state is not on the computed path
will require additional effort. Third, artificial intelligence is often a composition of numerous
machine learning and decision-making algorithms, and explicitly modeling each one of these
algorithms is not practical. Instead, we need a technique which can treat these algorithms as
black-box oracles, and obtain explanations by observing their output on selected inputs.

These observations motivate us to formulate the problem of generating explanations as
an oracle-guided learning of Boolean formula, where the AI algorithm is queried multiple
times on carefully selected inputs to generate examples, which in turn are used to learn
the explanation. Given the observable system and environment states, S and E respectively,
typical explanations depend on only a small subset of elements in the overall vocabulary
V = S∪ E , that is, if the set of state variables on which the explanation φ depends is denoted
by support(φ) ⊆ V , then |support(φ)| << |V |. Thus, the explanations are sparse formulae

123

Explaining AI Decisions Using Efficient Methods for Learning…

over the vocabulary V . But this support set support(φ) or its size is not known a priori.
The number of examples needed to learn a Boolean formula is exponential in the size of the
vocabulary in the general case [12,24,25].Motivated by the problem of learning explanations,
we propose an efficient algorithm that exploits sparsity to efficiently learn sparse Boolean
formulas.

This assumption of sparseness and simplicity of explanations is motivated by the Occam’s
Razor principle, and is shared across a number of approaches to interpretable machine
learning. Techniques based on prediction decomposition, pioneered by Robnik-Sikonja and
Kononenko [38] and extended in [10,46], compare the original prediction and the one made
by omitting features. This technique is tractable if the number of features being examined
is small. Another class of technique focuses on gradient-based learning methods and clas-
sification tasks by identifying the local gradients that change the label of a data point as
its explanation [4]. Each entry in this gradient vector indicates the weight of a feature. But
this approach is limited to finding only explanations that are conjunctions of features. The
extension to discovering arbitrary Boolean explanations relies on enumerating these gradient
vectors across a small set of selected feature subspaces. Another line of work [26] aims at
learning interpretable decision sets where prediction is made by a set of rules where each rule
has a set of predicates. The decision sets are constructed byminimizing the number of rules as
well as the set of predicates in each rule. Finally, locally interpretable model-agnostic expla-
nations (LIME) methodology [36] aims at approximating decision boundary in the locality
of the data point as explanation of the decision at that data point. It relies on sampling neigh-
borhood of the data point to construct this local decision boundary. It uses a lasso regression
with preprocessing to select top k most significant features beforehand, named K-LASSO.
Thus, all these techniques exploit the sparseness of the explanations. While our approach
also uses this assumption, we propose a novel approach to identify these relevant features
from a large vocabulary set.

Our approach builds on recent advances in formal synthesis [20,22,23]. We make the
following contributions:

– We formulate the problem of finding explanations for decision-making AI algorithms as
the problem of learning sparse Boolean formulae.

– We present two algorithms to learn sparse Boolean formulas where the size of required
examples grows logarithmically (in contrast to exponentially in the general case) with the
size of the overall vocabulary.We theoretically and empirically compare these algorithms.

– The first algorithm is based on a binary search in the Hamming space. The procedure
uses random sampling to find two assignments to variables such that the inputs
corresponding to these assignments generate different outcomes from the oracle
running the AI algorithm, and then finds inputs, using binary search, differing on
only a single (relevant) variable and producing different outcomes. This process is
repeated sequentially to find relevant variables.

– The second algorithm is based on randomwalk in the Boolean hypercube. The proce-
dure uses results on mixing time of randomwalks over graphs to find the the required
length of walk such that either the algorithm finds neighboring assignments differing
in only a single (relevant) variable and producing different outcomes from the oracle,
or we know that all the relevant variables have been found with a given confidence.

– We illustrate the effectiveness of our approach on a set of case-studies.

This paper is an extended version of our work (NASA Formal Methods Symposium,
2017) [21]. In addition to the results in [21], we present a novel algorithm for learning sparse

123

S. Jha et al.

Boolean formula based on random walks on a Boolean hypercube. This algorithm also has
logarithmic dependence on the size of the vocabulary but it requires fewer examples (both,
theoretically and empirically) than the approach based on binary search in Hamming space
presented in [21].

The rest of the paper is organized as follows. We explain the problem using a motivating
example in Sect. 2 and present a formal description in Sect. 3. In Sect. 4, we present the
overall approach for learning sparse Boolean formula in two steps: the first step finds the
relevant variables that form the support set of the explanation, and the second step synthesizes
the Boolean formula with this support set.We describe two algorithms for finding the support
set of sparse Boolean formulae—the first uses a binary search in the Hamming space and
the second is based on a random walk over Boolean hypercube. We analyze the learning
complexity of both algorithms in Sect. 5. The application of our approach to a set of case-
studies is presented in Sect. 6. We discuss related work in Sect. 7 and conclude in Sect. 8 by
identifying promising research directions.

2 Motivating Example

We now describe a motivating example to illustrate the problem of providing human-
interpretable explanations for the results of an AI algorithm. We consider the A* planning
algorithm [27], which enjoys widespread use in path and motion planning due to its opti-
mality and efficiency. Given a description of the state space and transitions between states
as a weighted graph where weights are used to encode costs such as distance and time,
A* starts from a specific node in the graph and constructs a tree of paths starting from
that node, expanding paths in a best-first fashion until one of them reaches the prede-
termined goal node. At each iteration, A* determines which of its partial paths is most
promising and should be expanded. This decision is based on the estimate of the cost-
to-go to the goal node. Specifically, A* selects an intermediate node n that minimizes
totalCost(n) = partialCost(n) + guessCost(n), where totalCost is the
estimated total cost of the path that includes node n, obtained as the sum of the cost
(partialCost(n)) of reaching n from the initial node, and a heuristic estimate of the
cost (guessCost(n)) of reaching the goal from n. The heuristic function guessCost is
problem-specific: e.g., when searching for the shortest path on a Manhattan grid with obsta-
cles, a good guessCost is the straight line distance from the node n to the final destination.
Typical implementations of A* use a priority queue to perform the repeated selection of
intermediate nodes. This priority queue is known as the open set or fringe. At each step
of the algorithm, the node with the lowest totalCost value is removed from the queue,
and “expanded”, This means that the partialCost values of its neighbors are updated
accordingly based on whether going through n improves them, and these neighbors are added
to the queue. The algorithm continues until some goal node has the minimum cost value,
totalCost, in the queue, or until the queue is empty (in which case no plan exists). The
totalCost value of the goal node is then the cost of the optimal path. We refer readers
to [27] for a detailed description of A*. In rest of this section, we illustrate the need for
providing explanations using a simple example map and application of A* on it to find the
shortest path.

Figure 1 depicts the result of running A* on a 50×50 grid, where cells that form part of
an obstacle are colored red. The input map (Fig. 1a) shows the obstacles and free space. A*

123

Explaining AI Decisions Using Efficient Methods for Learning…

Fig. 1 a Input map to A*. bOutput showing final path and internal states of A*. Cells on the computed optimal
path are colored dark blue. Cells which entered A*’s priority queue are colored light cyan, and those cells that
never entered the queue are colored yellow

is run to find a path from lower right corner to upper left corner. The output map is shown in
Fig. 1b.

Consider the three cells X, Y, Z marked in the output of A* in Fig. 1b and the following
inquiries on the optimal path discovered by A*:

– Why was the cell Y not selected for the optimal path? Given the output and logged
internal states of the A* algorithm, we know that Y was considered as a candidate cell
but discarded due to non-optimal cost.

– Why was the cell X not selected for the optimal path? If we logged the internal states of
the A* algorithm, we would find that X was not even considered as a candidate and it
never entered the priority queue of the A* algorithm. But this is not a useful explanation
because a non-expert user cannot be expected to understand the concept of a priority
queue, or the details of how A* works.

– Why was the cell Z not selected for the optimal path? The cell Z was also never inserted
into the priority queue and hence, it was never a candidate to be selected on the optimal
path similar to cell X. When responding to a user query about why X and Z were not
selected in the optimal path, we cannot differentiate between the two even if all the
internal decisions and states of the A* algorithm were logged. So, we cannot provide
the intuitively expected explanation that Z is not reachable due to obstacles, while X is
reachable but has higher cost than the cells that were considered.

This example scenario illustrates the need for new information to provide explanation in
addition to the usual deduction by AI algorithm while solving the original decision making
problem.

3 ProblemDefinition

The class of AI algorithms used in autonomous systems include path planning algorithms,
discrete and continuous control, computer vision and image recognition algorithms. All of
these algorithms would be rendered more useful by the ability to explain themselves. Our

123

S. Jha et al.

goal is to eventually develop an approach to generate explanations for the overall system, but
we focus on individual components in this paper rather than the overall system. For example,
the path planner for a self-driving car takes inputs from machine learning and sensor-fusion
algorithms, which in turn receive data from camera, LIDAR and other sensors. The processed
sensor data often has semantic meaning attached to it, such as detection of pedestrians on
the road, presence of other cars, traffic distribution in a road network, and so on. Given this
semantic information, the reason for a particular path being selected by the path planner is
often not obvious: this is the sort of explanation we target to generate automatically.

3.1 Defining theVocabulary for Explanation

A decision-making AI algorithm Alg can be modelled as a function that computes the values
of output variables out given input variables in, that is,

Alg : in → out

The outputs are the decision variables, while the inputs include the environment and system
states as observed by the system through the perception pipeline.While the decision and state
variables can be continuous and real valued, the inquiries and explanations are framed using
predicates over these variables, such as comparison of a variable to some threshold. These
predicates can either be directly provided by the user or the developer of the AI system, or
they can be automatically extracted from the implementation of the AI system by including
predicates that appear in the control flow of the AI system. These must be predicates over
the input and output variables, that is, in and out, which are understood by the users.
Our approach exploits the sparsity of Boolean formula for learning the explanations and
so, the vocabulary can include all possible predicates and variables that might be useful for
explaining AI decisions. We propose methods to efficiently find relevant variables where
these methods only depend logarithmically on the size of the vocabulary. This ensures that
the definition of vocabulary can conveniently include all possible variables, and our approach
can automatically find the relevant subset and synthesize the corresponding explanation.

We denote the vocabulary of atomic predicates used in the inquiry from the user and
the provided explanation from the system by V . We can separate the vocabulary V into two
subsets: VQ used to formulate the user inquiry and VR used to provide explanations.

VQ = {q1, q2, . . . qm},VR = {r1, r2, . . . rn} where qi , ri : in ∪ out → Bool

Intuitively, V is the shared vocabulary that describes the interface of the AI algorithm and
is understood by the human-user. For example, the inquiry vocabulary for a planning agent
may include propositions denoting selection of a waypoint in the path, and the explanation
vocabulary may include propositions denoting presence of obstacles on a map.

3.2 Explanation Inquiry and Response

An inquiry φQ from the user is an observation about the output (decision) of the algorithm,
and can be formulated as a Boolean combination of predicates in the vocabulary VQ . Hence,
we can denote it as φQ(VQ) where the predicates in VQ are over the set in ∪ out, and the
corresponding grammar is:

φQ := φQ ∧ φQ | φQ ∨ φQ |¬φQ | qi where qi ∈ VQ

123

Explaining AI Decisions Using Efficient Methods for Learning…

While conjunction and negation are sufficient to express any Boolean combination, we
include disjunction and implication for succinctness of inquiries. Similarly, the response
φR(VR) is a Boolean combination of the predicates in the vocabularyVR where the predicates
in VR are over the set in ∪ out, and the corresponding grammar is:

φR := φR ∧ φR | φR ∨ φR | ¬φR | ri where ri ∈ VR

Definition 1 Given an AI algorithm Alg and an inquiry φQ(VQ), φR(VR) is a necessary
and sufficient explanation when φR(VR) ⇐⇒ φQ(VQ) where VR,VQ are predicates over
in ∪ out as explained earlier, and out = Alg(in). φR(VR) is a sufficient explanation
when φR(VR) ⇒ φQ(VQ).

If the algorithmout = Alg(in) could bemodeled explicitly in appropriate logic, then the
above definition could be used to generate explanations for a given inquiry using techniques
such as satisfiability solving. However, such an explicit modeling of these algorithms is
currently outside the scope of existing logical deduction frameworks, and is impractical for
large and complicated AI systems even from the standpoint of the associated modeling effort.
TheAI algorithmAlg is available as an executable function; hence, it can be used as an oracle
that can provide an outputs for any given input. This motivates oracle-guided learning of the
explanation from examples using the notion of confidence associated with it.

Definition 2 Given an AI algorithm Alg and an inquiry φQ(VQ), φR(VR) is a necessary and
sufficient explanation with probabilistic confidence κ when Pr(φR(VR) ⇐⇒ φQ(VQ)) ≥
κ , where VR,VQ are predicates over in ∪ out as explained earlier, out = Alg(in) and
0 ≤ κ ≤ 1. The probability of satisfaction of φR(VR) ⇐⇒ φQ(VQ) is computed using
uniform distribution over the variables in V . This uniform distribution is not an assumption
over the context in which an AI algorithm Alg is used. This uniform distribution is only
used to estimate the probability of finding the correct explanation. Similarly, φR(in) is a
sufficient explanation with confidence κ when Pr(φR(VR) ⇒ φQ(VQ)) ≥ κ .

The oracle used to learn the explanation uses the AI algorithm. It runs the AI algorithm on
a given input ini to generate the decision output outi , and then marks the input as a positive
example if φQ(outi) is true, that is, the inquiry property holds on the output. It marks the
input as a negative example if φQ(outi) is not true. We call this an introspection oraclewhich
marks each input as either positive or negative.

Definition 3 An introspection oracleOφQ ,Alg for a given algorithmAlg and inquiryφQ takes
an input ini and maps it to a positive or negative label, that is, OφQ ,Alg : in → {⊕,}.
OφQ ,Alg(ini) = ⊕ if φQ(VQ(outi)) and OφQ ,Alg(ini) = if ¬φQ(VQ(outi)), where

outi = Alg(ini), and VQ(outi) is the evaluation of the predicates in VQ on outi

We now formally define the problem of learning Boolean formula with specified confi-
dence κ given an oracle that labels the examples.

Definition 4 The problem of oracle-guided learning of Boolean formula from examples is to
identify (with confidence κ) the target Boolean function φ over a set of atomic propositions
V by querying an oracleO that labels each input ini (which is an assignment to all variables
in V) as positive or negative {⊕,} depending on whether φ(ini) holds or not, respectively.

123

S. Jha et al.

We make the following observations which relates the problem of finding explanations
for decisions made by AI algorithms to the problem of learning Boolean formula.

Observation 1 The problem of generating explanation φR for the AI algorithm Alg and an
inquiry φQ is equivalent to the problem of oracle-guided learning of Boolean formula φR

using oracle OφQ ,Alg as described in Definition 4.

φ[ri] denotes the restriction of the Boolean formula φ by setting ri to true in φ and φ[ri]
denotes the restriction of φ by setting ri to false. A predicate ri is in the support of the
Boolean formula φ, that is, ri ∈ support(φ) if and only if φ[ri] �= φ[ri].
Observation 2 The explanation φR over a vocabulary of atoms VR for the AI algorithm Alg
and a user inquiry φQ is a sparse Boolean formula, that is, |support(φR)| << |VR |.

These observations motivate the following problem definition for learning sparse Boolean
formula.

Definition 5 Boolean function φ is called k-sparse if |support(φR)| ≤ k. The problem
of oracle-guided learning of k-sparse Boolean formula from examples is to identify (with
confidence κ) the target k-sparse Boolean function φ over a set of atomic propositions V by
querying an oracleO that labels each input ini (which is an assignment to all variables in V)
as positive or negative {⊕,} depending on whether φ(ini) holds or not, respectively.

The explanation of decisions made by an AI algorithm can be generated by solving the
problem of oracle-guided learning of k-sparse Boolean formula.

4 Learning Sparse Boolean Formula

Our proposed approach to solve the k-sparse Boolean formula learning problem has two
steps:

1 In the first step, we find the support of the explanation, that is, support(φR) ⊆ VR .
This is accomplished using a novel approach which requires a small number of runs
(logarithmic in |VR |) of the AI algorithm Alg.

2 In the second step, we find the Boolean combination of the atoms in VφR which forms
the explanation φR . This is accomplished by distinguishing input guided learning of
propositional logic formulawhichwe have earlier used for the synthesis of programs [20].

Before delving into details of the two steps, we introduce additional relevant notations.
Recall that the vocabulary of explanation is VR = {r1, r2, . . . , rn}.

Given any two inputs in1 and in2, we define the difference between them as follows.

diff(in1, in2) = {i | ri (in1) �= ri (in2)}.
Next, we define a distance metric d on inputs as the size of the difference set, that is,

d(in1, in2) = |diff(in1, in2)|
d(in1, in2) is the Hamming distance between the n-length vectors that record the evaluation
of the atomic predicates ri in VR . We say that two inputs in1, in2 are neighbours if and only
if d(in1, in2) = 1. We also define a partial order � on inputs as follows:

in1 � in2 iff ri (in1) ⇒ ri (in2) for all 1 ≤ i ≤ n

123

Explaining AI Decisions Using Efficient Methods for Learning…

Given an input in and a set J ⊆ {1, 2, . . . , n}, a random J-preserving mutation of in,
denoted mutset(in, J), is defined as:

mutset(in, J) = {in′|in′ ∈ in and r j (in
′) = r j (in) for all j ∈ J }

A random walk walk over the Boolean hypercube starts with a random initial input in0.
The input at iteration t+1 is int+1 = walk(int) and int+1 is obtained by randomly sampling
an index j from [1, n] with uniform probability and then flipping the variable at index j of
int with probability 1/2.

p(walk(int) = in | int) = 1

2
if in = int

= 1

2n
if d(in, int) = 1

4.1 Learning Based on Binary Search in Hamming Space

We begin with two random inputs in1, in2 on which the oracle OφQ ,Alg returns different
labels, for example, it returns positive on in1 and negative on in2 without loss of generality.
Finding such in1, in2 can be done by sampling the inputs and querying the oracle until two
inputs disagree on the outputs. The more samples we find without getting a pair that disagree
on the label, the more likely it is that the Boolean formula being used by the oracle to label
inputs is a constant (either true or false).

We can definesample(OφQ ,Alg, in, J , κ) that samplesm = 2k ln(1/(1−κ)) inputs from
the set mutset(in, J) and generates two inputs on which the oracleOφQ ,Alg disagrees and
produces different outputs. If it cannot find such a pair of inputs, it returns ⊥. Lemma 1
justifies why the size m of the samples is sufficient to achieve the probabilistic confidence κ .

Lemma 1 If m random samples in1, in2, . . . , inm from mutset(in, J) produce the same
output as input ‘in’ for the oracleOφQ ,Alg where φR is k-sparse, then the probability that all
mutations in′ ∈ mutset(in, J) produce the same output (that is, the oracle is a constant
function over mutset(in, J)) is at least κ , where m = 2k ln(1/(1 − κ)).

Proof If all the mutations in′ ∈ mutset(in, J) do not produce the same output, then the
probability of the OracleOφQ ,Alg differing from the output of in for any random sample in′
is at least 1/2k since the size of the set mutset(in, J) is at most s = 2k . So,

(1 − 1/s)m ≥ 1 − κ ⇐ e(−1/s)m ≥ 1 − κ (since 1 − x ≤ e−x)

⇔ (−1/s)m ≥ ln(1 − κ) ⇔ m ≤ s ln(1/(1 − κ))

��
Ifsample(OφQ ,Alg, in, J , κ) returns⊥, we have found the constant function.Otherwise,

it returns two inputs in1, in2 on which the oracle disagrees. We find J = diff(in1, in2) =
{i1, i2, . . . , il} onwhich the inputs differwith respect to the vocabularyVR = {r1, r2, . . . , rn}.
We partition J into two subsets J1 = {i1, i2, . . . , i�l/2�} and J2 = {i�l/2�+1, i�l/2�+2, . . . , il}.
The two sets J1 and J2 differ in size by at most 1. The set of inputs that are halfway
between the two inputs w.r.t the Hamming distance metric d defined earlier is given by
the set bisect(in1, in2) defined as:

bisect(in1, in2) = {in′| ∀ j ∈ J1 r j (in
′) iff r j (in1),∀ j ∈ J2 r j (in

′) iff r j (in2)}

123

S. Jha et al.

Satisfiability solvers can be used to generate an input in′ from bisect(in1, in2). The oracle
OφQ ,Alg is run on in′ to produce the corresponding label. This label will match either the
label for the input in1 or that of the input in2. We discard the input whose label matches in′
to produce the next pair of inputs, that is,

introspect(in1, in2) =
{

(in1, in′) if OφQ ,Alg(in′) �= OφQ ,Alg(in2)
(in′, in2) if OφQ ,Alg(in′) �= OφQ ,Alg(in1)

where in′ ∈ bisect(in1, in2)

Starting from an initial pair of inputs on which OφQ ,Alg produces different labels, we
repeat the above process, considering a new pair of inputs at each iteration until we have
two inputs in1, in2 that are neighbours, with diff(in1, in2, S) = { j}. At this point, we
can conclude that r j ∈ VR is in the support of the explanation φR because changing the
assignment of r j changes the response of the oracle.

We add r j to the set of variables VφR . We repeat the above process twice to find the
next relevant variable to add to the support set by setting r j to first true and then false. This
introspective search for variables in the support set VφR is repeated till we cannot find a
pair of inputs in1, in2 on which the oracle produces different outputs. This continues till
the sample(OφQ ,Alg, in, J , κ) returns ⊥ and we have found all the relevant variables with
probabilistic confidence κ .

This overall algorithm for finding the support of the explanations φR with probability κ

is presented in Algorithm 1 using the oracle OφQ ,Alg. It is a recursive algorithm which is
initially called with a randomly generated input in = random assignment to VφR , and an
empty set J = ∅.

Algorithm 1 Computation of VφR using binary search in Hamming space:
getSupport(OφQ ,Alg, in, J , κ)

if sample(OφQ ,Alg, in, J , κ) = ⊥ then
// The J -restricted Boolean formula is constant function with probability κ .
return {}

else
(in1, in2) ⇐ sample(OφQ ,Alg, in, J , κ)

while |diff(in1, in2)| �= 1 do
in1, in2 ⇐ introspect(in1, in2)

ri is the singleton element in diff(in1, in2)
J ⇐ J ∪ {i}
return {ri } ∪ getSupport(OφQ ,Alg, in1, J , κ) ∪ getSupport(OφQ ,Alg, in2, J , κ)

Finding sufficient explanations After finding a relevant variable, Algorithm 1 searches for
the remaining support of the explanation by setting the found variable to be true and then
setting it to false (recursing on in1 and in2). So, the number of recursive calls is exponential
in k—the size of the support set (relevant variables). But it is not exponential in the size
of the vocabulary, and we show later in Sect. 5 that the number of examples required by
Algorithm 1 depends only logarithmically on the vocabulary size. The size of the support set
is much smaller than the vocabulary size of the k-sparse Boolean formula. The support of a
sufficient explanation can be found bymaking the recursive call on only one of the two inputs,
that is, getSupport(OφQ ,Alg, in1, J , κ) or getSupport(OφQ ,Alg, in2, J , κ) instead of
both.

123

Explaining AI Decisions Using Efficient Methods for Learning…

Example Let us consider the target 2-sparse Boolean formula to be x1 ∨ x2 over the vocabu-
lary set x1, x2, x3, x4, x5. It is a sparse formula which depends on only 2 out of the 5 atomic
propositions. We need to learn the formula using oracle O for the formula. O is an oracle
that can label any input assignment to be positive or negative depending on whether it sat-
isfies the Boolean formula x1 ∨ x2 or not. Given two random samples (T,F,T,F,F) and
(F,F,F,T,T)—the first is labeled positive by the oracle O and the second is negative. The
diff set is {1, 3, 4, 5} and the bisect produces a new example (T,F,T,T,T) which is
labeled positive. So, the next pair is (T,F,T,T,T) and (F,F,F,T,T). The bisect now
produces new example (T,F,F,T,T)which is labeled positive. Now, the difference setdiff
between (T,F,F,T,T) labeled positive and (F,F,F,T,T) labeled negative, is a singleton
set {1}. The binary search over the Hamming space of input assignment ends when the dif-
ference set diff is a singleton set. So, x1 is in the support set of φR . Setting x1 to F , we
repeat the above process again. Consider the two initial random inputs (F,T,T,T,T) and
(F,F,T,F,F) where the first is labeled positive and the second is labeled negative. The
bisect function finds (F,T,T,F,F) which is labeled positive, and the new example pair
becomes (F,T,T,F,F) (positive) and (F,F,T,F,F) (negative). Again, the difference set is
a singleton set {2}. So, x2 is also in the support set of φ. Setting x1 to T , we find that the
Oracle computes the constant function T and sample function returns ⊥ after sampling
enough examples for the given probabilistic confidence κ . Setting x1 and x2 also makes the
restricted function constant with respect to the other three non-relevant variables. Thus, we
have identified {x1, x2} as the set of relevant variables.

4.2 Learning Based on RandomWalk in Boolean Hypercube

The algorithm for finding relevant variables using random walk in Boolean hypercube starts
with a random initial input in0. This input is a vertex in the n-dimensional Boolean hypercube
of the VR variables. The algorithm performs a random walk from this vertex, proceeding
in iteration t from the vertex int to the vertex walk(int) = int+1. As defined earlier,
walk probabilistically either chooses to stay at the same vertex, or to move to a vertex
which is 1 Hamming distance away where the differing variable in VR is uniformly selected
from the n variables. This random walk is performed for at most L(k′, κ) = 2k

′
(2k′2)(1 +

log k′) log(k′/κ) steps when searching for k′ relevant variables. Using results from mixing
time, we will later show that random walk of this length must either find two neighboring
vertices on which the oracle produces different labels or the oracle computes a constant
function with probabilistic confidence κ . When we find neighboring vertices with different
labels, we can find the single variable on which these two inputs differ and clearly, this
variable is a relevant variable since changing its assignment changes the output of the oracle.
This is repeated to find all the relevant variables. The recursive Algorithm 2 is initially called
as getSupportRW(OφQ ,Alg, in0, {}, κ, k′) with random initial input in0 and an empty set
as the so far found variables, J = {}. For learning sparse Boolean formula, we may not know
the size of the support set and so, Algorithm 2 is repeated with k′ = 1, 2, . . . , k till we can’t
findmore relevant variables.We analyze the complexity of this algorithm in Sect. 5, and show
that the number of examples required to find all the relevant variables is logarithmic in the size
of the vocabulary VR . Lemma 2 establish that L(k′, κ) = 2k

′
(2k′2)(1+ log k′) log(n/(1−κ))

is a sufficiently long random walk that the function must be constant if all the vertices have
the same label.

Lemma 2 The expected mixing time of the uniform random walk in Algorithm 2 is smaller
than k(1 + log k) where k = |VR | is the number of relevant variables, that is, the expected

123

S. Jha et al.

Algorithm 2 Computation of VφR using random walk over Boolean hypercube:
getSupportRW(OφQ ,Alg, in, J , κ, k′)
t = 0
while t ≤ L(k′, κ) do

int+1 = walk(int)
if OφQ ,Alg(int+1) �= OφQ ,Alg(int) then

ri is the singleton element in diff(int+1, int)
J ⇐ J ∪ {i}
return getSupportRW(OφQ ,Alg, in, J , κ, k′)

t = t + 1
return J

number of steps starting from any vertex in the hypercube, after which sampling is identical
to uniform sampling from all the 2n possible assignments is less than k(1 + log k). This is a
formulation of the well known “coupon collector’s problem” [7].

Proof We define a new random variable C j for 1 ≤ j ≤ k that counts the number of steps
since j − 1 unique relevant variables have been found until the j-th relevant variable is
identified. Given the probabilistic definition of the walk, C j is a geometric random variable
with success probability (k − j + 1)/k, and consequently the mixing time is

E

⎡
⎣ k∑

j=1

C j

⎤
⎦ =

k∑
j=1

E[C j] =
k∑
j=1

k

k − j + 1
= k

k∑
j=1

1

j
= kHk < k(1 + log k)

where E denotes the expected value for the randomwalk and Hk is the partial harmonic sum.
The final inequality results from the upper bound on the partial harmonic sum. ��

If we consider random walk of length m′ = 2k(1+ log k), then the probability that the m-th
vertex is uniformly sampled is

1 − P

⎛
⎝ k∑

j=1

C j ≥ m′
⎞
⎠ ≥ 1 −

E
[∑k

j=1 C j

]
m′ > 1 −

E
[∑k

j=1 C j

]

2E
[∑k

j=1 C j

] = 1

2

If the vertices are uniformly randomly sampled, then the probability of finding neighboring
vertices which have different labels and hence, differ in a relevant variable is the probability
of picking one of the k relevant variables and picking one of the two vertices of the 2k possible
assignments which have different labels and differ in the assignment of the relevant variable.
Each relevant variable has at least two such vertices. In general, a relevant variable with
higher sensitivity would have more than 2 such vertices. Thus, the probability of finding a
relevant variable under uniform sampling is 1

2k
. 1k .

Let us consider m′′ length random walk after reaching uniform sampling threshold, then
the probability of not discovering any of the relevant variable from the vocabulary of size n
is n(1 − 1

k.2k
)m

′′
. For a given probabilistic confidence κ , we require n(1 − 1

k.2k
)m

′′ ≤ 1 − κ ,

and using 1 − x ≤ e−x , we get that m′′ ≤ k2k log n
1−κ

.
Thus, after L(k, κ) = m′m′′ length random walk, the probability of finding a relevant

variable is at least κ .

L(k, κ) = m′m′′ = 2k(1 + log k) × k2k log
n

1 − κ
= 2k2k2(1 + log k) log(n/(1 − κ))

123

Explaining AI Decisions Using Efficient Methods for Learning…

Algorithm 2 is repeated for k′ = 1, 2, . . . , k because we don’t know the number (k) of
relevant variables apriori. We analyze the overall example complexity of the algorithm in
Sect. 5.

Algorithm 3 Learning φR given the vocabulary VφR and oracle OφQ ,Alg

Randomly sample an input in0
if OφQ ,Alg(in0) = ⊕ then

E+ ⇐ E+ ∪ {in0}
else

E− ⇐ E− ∪ {in0}
φc
R = Boolean formula consistent with E+, E−

while Alternative φa
R consistent with E+, E− exists do

Generate distinguishing input in that satisfies (φc
R ∧ ¬φa

R) ∨ (φa
R ∧ ¬φc

R)

if OφQ ,Alg(in) = ⊕ then

E+ ⇐ E+ ∪ {in}
else

E− ⇐ E− ∪ {in}
φc
R = Boolean formula consistent with E+, E−

return φc
R

4.3 Learning Boolean Formula�R with Given Support

Learning a Boolean formula that forms the explanationφR for the given queryφQ is relatively
straight-forward once the variables VφR which form the support of the Boolean formula have
been identified. Efficient techniques have been developed to solve this problem in the context
of program synthesis, and we adopt a technique based on the use of distinguishing inputs
proposed by us in [20]. This algorithm starts with a single random input in1. The oracle
OφQ ,Alg is queried with the example in1 and the oracle either labels it to be positive or
negative. A candidate explanation φc

R is generated which is consistent with the positive
and negative examples seen so far. Then, the algorithm tries to find an alternative consistent
explanationφa

R . If such an alternate explanationφa
R cannot be found, the algorithm terminates

with φc
R as the final explanation. If φa

R is found, we search for an input which distinguishes
φc
R and φa

R , and then query the oracle with this new distinguishing input. The oracle labels
this new input as positive or negative. This label is guaranteed to be inconsistent with one of
the explanations Rc or Ra since they differ on the label assigned to this input. Thus, the new
label provided by the oracle to this distinguishing input refutes one of the two explanation
formulae Rc or Ra . This procedure of finding two consistent explanations followed by search
for a distinguishing input is repeating until we converge to a single Boolean formula which
is the uniquely consistent explanation. In the worst-case, all 2k inputs must be generated but
usually a small set of inputs is sufficient. Algorithm 3 summarizes this learning procedure.

4.4 Impact of Incomplete Vocabulary

If the vocabulary is complete, that is, an explanation can be constructed using the variables
in the vocabulary, then the presented approach finds the correct support set with the given
probabilistic confidence and synthesizes the Boolean formula using this support set. But if the

123

S. Jha et al.

vocabulary is not complete and we are missing variables that are critical to the explanation,
it results in one of the following scenarios.

– Algorithm 3 finds a set of labeled examples E+ and E− such that there is no Boolean
formula with the given support set that is consistent with E+ and E−. These examples
serve as an evidence that the vocabulary is insufficient to generate the explanation.

– Algorithm 3 finds a set of labeled examples E+ and E− such that there is a unique
Boolean formula consistent with these examples but not the correct explanation. In this
case, our approach would produce this incorrect explanation. We note that stumbling on
such a set of labeled examples which admits a unique Boolean formula by chance, is
very unlikely in practice.

Thus, the probabilistic soundness and completeness of our approach in finding the correct
explanation requires the vocabulary to be complete. Since our approach scales logarithmically
in the size of the vocabulary, this issue can be alleviated in practice by including all potential
variables into the vocabulary that might be useful in generating the explanation.

5 Complexity Analysis

5.1 Complexity of Binary Search in Hamming Space

The efficiency of the introspection process to obtain each variable is summarized in Lemma 3.

Lemma 3 The introspective search for each new variable r j ∈ VφR takes at most O(ln n)

queries to OφQ ,Alg.

Proof The size of the difference set J = diff(in1, in2) for any inputs in1, in2 is at most n
for a vocabulary φR of size n. The i-th call tointrospect reduces the size of the difference
set as follows: |J (i)| ≤ |J (i − 1)|/2 + 1. The number of calls to introspect before the
difference set is singleton and the two inputs are neighbours, obtained by solving the above
recurrence equation, is O(ln n). ��
Theorem 1 The introspective computation of the support set VφR of variables of the k-sparse
Boolean formula φR defined over the vocabulary of size n using at most O(2k ln(n/(1−κ)))

examples.

Proof Each variable in VφR can be found using an introspective search that needs at most
O(ln n) examples according to Lemma 3. So, the while loop in Algorithm 1 makes at most
O(ln n) queries. In Lemma 1, we showed that the maximum number of examples needed for
sample is O(2k ln(1/(1 − κ)). The recursion is repeated at most O(2k) times. Thus, the
overall algorithms needs at most O(22k (ln(1/(1−κ))+ ln n)), that is, O(22k ln(n/(1−κ)))

examples. ��

5.2 Complexity of RandomWalk on Boolean Hypercube

Theorem 2 Finding all the relevant variables using random walk on the Boolean hypercube
requires at most 2k+12k2(1 + log k) log(n/(1 − κ)) examples.

Proof Finding k′ relevant variable requires at most L(k′, κ) = 2k
′
2k′2(1+ log k′) log(n/(1−

κ)) examples.We repeat Algorithm 2 for k′ = 1, 2, . . . , k because we don’t know the number

123

Explaining AI Decisions Using Efficient Methods for Learning…

(k) of relevant variables apriori. Thus, the total number of examples is
∑k

k′=1 2
k′
2k′2(1 +

log k′) log(n/(1 − κ)) ≤ 2k+12k2(1 + log k) log(n/(1 − κ)). ��
Observation 3 The number of examples required by the random walk approach to find all the
relevant variables is smaller than the number of examples required by the binary search in
Hamming space. It is smaller by a factor of 2k/poly(k) where poly(k) denotes a polynomial
in k.

5.3 Complexity of Learning Sparse Boolean Formula

Theorem 3 The overall algorithm to generate k-sparse explanation φR for a given query φQ

takes O(22k ln(n/(1− κ))) queries to the oracle, that is, the number of examples needed to
learn the Boolean formula grows logarithmically with the size of the vocabulary n.

Proof The first-step to compute the support set VφR of the explanation φR takes at most
O(22k ln(n/(1− κ))) queries. After that, the learning of explanation φR with given support
takes atmost O(2k) queries. So, the total number of queries needed is O(22k ln(n/(1−κ))).��

Thus, our algorithm finds the support of the Boolean formula over a vocabulary of size
n using a number of examples that grow logarithmically in n. After the support has been
found, learning the Boolean formula can be accomplished using the formal synthesis based
approach that depends only on the size of the support set and not on the vocabulary size
n. Algorithms that do not exploit sparsity have been previously shown to need examples
that grow exponentially in n [24,25] in contrast to the logarithmic dependence on n of
the algorithm proposed here. The proposed algorithm is very effective for sparse Boolean
formula, that is, k << n, which is often the case with explanations.

6 Experiments

In this section, we describe the result of empirical evaluation of the proposed approaches
(Table 1).

6.1 Explaining A* Decisions

We begin by describing the results on the motivating example of A* presented in Sect. 2.
The vocabulary is VQ = {oni j for each cell i, j in the grid }where oni j denotes the decision
that i, j-th cell was selected to be on the final path, and ¬oni j denotes the decision that the
i, j-th cell was not selected to be on the final path. The vocabulary VR = {obsti j } for each

Table 1 Parameters used in different case studies

Case Study |V | |VQ | |VR | Number of possible Confidence κ

explanations

A* algorithm 2677 2500 177 1.9 × 1053 0.9

Reactive Strategy 174 96 78 7.9 × 1028 0.9

MNIST classification 586 10 576 2.5 × 10173 [0.8–0.99]

123

S. Jha et al.

cell i, j in the grid where obsti j denotes that the cell i, j has an obstacle and ¬obsti j
denote that the cell i, j is free. The explanation query is: “Why were no points in 25 ≤ i ≤
50, j = 40 (around z) not considered on the generated path?” The inquiry framed usingVQ is∧

25≤i≤50 ¬(oni,40). A sufficient explanation for this inquiry is obst42,32 ∧obst37,32 with
κ set to 0.9. This is obtained in 2min 4s (48 examples) using binary search and 2min 56s (65
examples) using randomwalk. The second query is for the area around x:

∧
0≤i≤20 ¬(oni,44)

and the sufficient explanation obtained is obst2,17 ∧ obst2,18 in 2min 44s (57 examples)
using binary search in Hamming space and 2min 18 seconds (38 examples) using random
walk. The third query for area around y is

∧
0≤i≤5 ¬(oni,5) and the corresponding explanation

is obst4,17 ∧obst4,18 which was obtained in 1min 48s (45 examples) using binary search
in Hamming space and 1min 15s (37 examples) using randomwalk. Given the 177 obstacles,
a naive approach of enumerating all possible explanations would require 1.9 × 1053 runs of
A* which is clearly infeasible in each of these three cases. Even if we assumed that the
number of explanations is 2 (but did not know which two variables are in the support set),
there are more than 15,000 cases to be considered.

6.2 Explaining Reactive Strategy [33]

We also applied our approach to a reactive switching protocol for multi-robot systems gen-
erated according to the approach described in [33]. We only applied the binary search based
method due to the simplicity of explanation. The task involves 4 robots operating in the
workspace depicted in Figure 2. In the beginning, each robot is assigned the corresponding
area to surveil (i.e. Robot i is assigned to Area i). Starting from their initial positions, they
must reach this region. However, in response to the opening and closing of doors in the envi-
ronment at each time step, they are allowed to swap goals. As can be seen from the Fig. 2,
robots 1 and 2 swap goals because the top door closes, and robots 3 and 4 swap goals because
the bottom door is closed. They stand by these decisions even though the doors later reopen.
The simulation takes 24 time steps for all the robots to reach their final goals. The vocabulary
is VQ = {finali j for each robot i and area j}, where finali j denotes that robot i ended
up in area j . The vocabulary VR = {doortop,t ,doorbot,t , doorleft,t ,doorright,t },
where doortop,t denotes that the door between the top and middle row of areas is closed
at time t , doorleft,t denotes that the door between the left and middle column of areas is
closed at time t , etc. We pose the query,“Why did Robot 1 end up in Area 2?”, i.e. final12.
Starting with the original input sequence and one in which no door-related events occur, the
generated explanation is doorbot,3, which is obtained in 0.76 s, and 7 introspective runs of
the protocol on mutated inputs (door activity sequences). The second query was, “Why did
Robot 3 not end up in Area 3?”, or ¬final33. This took 0.61 s and 6 runs to generate”,
doortop,4. Given that there are 4 doors and 24 time steps, a naive approach of enumerating
all possible explanations would require (24)24 = 7.9 × 1028 runs of the reactive protocol.

6.3 Explaining Classification Error in MNIST [28]

MNIST database of scanned images of digits is a common benchmark used in literature to
evaluate image classification techniques. MNIST images were obtained by normalization of
original images into greyscale 28×28 pixel image. We consider a k-NN classifier for k=9
as the machine learning technique. Some of the test images are incorrectly identified by this
technique and we show one of these images in Fig. 3 where 4 is misidentified as 9.We deploy
our technique to find explanations for this error. The k-NN classifier uses voting among the

123

Explaining AI Decisions Using Efficient Methods for Learning…

Fig. 2 Execution of reactive strategy for particular sequence of door closings. Each Robot i is initially assigned
to goal Area i , but they can swap if needed to achieve the global goal (each marked area must eventually get
one robot). Brown lines indicate closed doors preventing the robots’ motion. Time steps depicted are 0, 3, 4
and 24

Fig. 3 Left to right: Misclassified image of ‘4’, closest image of ‘9’, changing all pixels corresponding to
support of explanations, changing pixels for one of the sufficient explanation, changing pixels for another
sufficient explanation

k-nearest neighbours to label test data. We show the nearest neighbour with label ‘9’ to the
misclassified image in the figure below. This image of 4 had 6 neighbourswhichwere labelled
‘9’. The oracle for generating explanations works as follows: If the number of neighbours of
the image labelled ‘9’ decreases from 6 (even if the final label from the k-NN classifier does
not change), the oracle marks the image as positive, and negative, otherwise. The vocabulary
of explanation is formed by 4×4 pixel blocks (similar to superpixels in [37]) being marked
completely dark or clear (this corresponds to predicate abstraction of greyscale pixels). The
set of atomic propositions in the support of the explanation is illustrated in the third figure by
manually picking assignment values to support variables for purpose of illustration. The last
two figures show images which are filtered by two conjunctions in the generated explanation.
We initialized the algorithm with the images of 4 and 9 in the figure below.

123

S. Jha et al.

Table 2 Change in runtime with
varying confidence κ

Confidence κ 0.80 0.85 0.90 0.95 0.99

Runtime (s) [Hamming] 112 156 228 308 510

Runtime (s) [Random walk] 46 61 78 212 485

We repeated the experiment with different values of confidence level κ and found our
approach is suitable for getting confidence as high as 0.99. Our approach can be easily
parallelized since each sample canbe independently queried from theAI algorithmormachine
learning model. For simplicity, we sequentially loop over the samples currently (Table 2).

7 RelatedWork

Our approach relies on learning logical explanations in the form of sparse Boolean for-
mula from examples that are obtained by carefully selected introspective simulations of the
decision-making algorithm. The area of active learning Boolean formula from positive and
negative examples has been studied in the literature [1,24] in both exact and probably approx-
imately correct (PAC) setting. Exact learning Boolean formula [3,25] requires a number of
examples exponential in the size of the vocabulary. Under the PAC setting, learning is guaran-
teed to find an approximately correct concept given enough independent samples [2,30,32].
It is known that k-clause conjunctive normal form Boolean formula are not PAC learnable
with polynomial sample-size, even though monomials and disjunctive normal form repre-
sentations are PAC learnable [12,32]. Changing the representation from CNF to DNF form
can lead to exponential blow-up. In contrast, we consider only sparse Boolean formulas and
our goal is to learn the exact Boolean formula with probabilistic confidence, and not its
approximation. Efficient learning techniques exist for particular classes of Boolean formulae
such as monotonic and read-one formulae [16,19], but explanations do not always take these
restricted forms, and hence, our focus on sparse Boolean formulae is better suited for this
context.

Another related research area is the newly emerged field of formal synthesis, which com-
bines induction and deduction for automatic synthesis of systems from logical or black-box
oracle specifications [20,22]. Unlike active learning, formal synthesis is also concerned with
defining techniques for the generation of interesting examples and not just its inductive
generalization, much like our approach. While existing formal synthesis techniques have
considered completion of templates by inferring parameters [5,35,41], composition of com-
ponent Boolean functions or uplifting to bitvector form [9,17,20,44], inferring transducers
and finite state-machines [6,8,15], and synthesis of invariants [40,42], our work is the first to
consider sparsity as a structural assumption for learning Boolean formulae.

The need for explanations of AI decisions to increase trust of decision-making systems
has been noted in the literature [29]. Specific approaches have been introduced to discover
explanations in specific domains such as MDPs[13], HTNs[18] and Bayesian networks[45].
Explanation of failure in robotic systems by detecting problems in the temporal logic specifi-
cation using formal requirement analysis was shown to be practically useful in [34]. Inductive
logic programming [14] has also been used to model domain-specific explanation generation
rules. In contrast, we propose a domain-independent approach to generate explanations by
treating the decision-making AI algorithm as an oracle. Domain-independent approaches
have also been proposed in the AI literature for detecting sensitive input components that

123

Explaining AI Decisions Using Efficient Methods for Learning…

determine the decision in a classification problem [37,43]. While these approaches work in
a quantitative setting, such as measuring sensitivity from the gradient of a neural network
classifier’s ouput, our approach is restricted to the discrete, qualitative setting. Further, we not
only detect sensitive inputs (support of Boolean formulae) but also generate the explanation.

8 Conclusion and FutureWork

We proposed a novel algorithm to first find the support of any sparse Boolean formula
using two alternative methods, followed by a formal synthesis approach to learn the target
formula from examples. We demonstrate how this method can be used to learn Boolean
formulae corresponding to the explanation of decisions made by an AI algorithm. This
capability of self-explanation is crucial for overcoming barriers to the adoption of AI in
safety-critical applications of autonomy. We identify two dimensions along which our work
can be extended. First, the approach needs to be generalized to non-deterministic AI systems
by learning Boolean formula from a noisy oracle. Second, we cannot yet infer multiple
valid explanations in response to an inquiry. Further, we are working on combining this
model-agnostic method for generating explanations by interrogating the model with white-
box methods for analyzing neural networks [11]. This work is a first step towards using
formal methods, particularly, formal synthesis to aid artificial intelligence by automatically
generating explanations of decisions made by AI algorithms.

Acknowledgements The authors acknowledge support from the National Science Foundation(NSF) Cyber-
Physical Systems #1740079 Project, NSF Software & Hardware Foundation #1750009 Project, and US ARL
Cooperative Agreement W911NF-17-2-0196 on Internet of Battle Things (IoBT).

References

1. Abouzied, A., Angluin, D., Papadimitriou, C., Hellerstein, J.M., Silberschatz, A.: Learning and verifying
quantified boolean queries by example. In: ACM Symposium on Principles of Database Systems, pp.
49–60. ACM (2013)

2. Angluin, D.: Computational learning theory: survey and selected bibliography. In: ACM Symposium on
Theory of Computing, pp. 351–369. ACM (1992)

3. Angluin, D., Kharitonov, M.: When won’t membership queries help? In: ACM Symposium on Theory of
Computing, pp. 444–454. ACM (1991)

4. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Ažller, K.-R.M.: How to explain
individual classification decisions. J. Mach. Learn. Res. 11(Jun), 1803–1831 (2010)

5. Bittner, B., Bozzano,M., Cimatti, A., Gario,M., Griggio, A.: Towards pareto-optimal parameter synthesis
for monotonie cost functions. In: FMCAD, pp. 23–30 (2014)

6. Boigelot, B.,Godefroid, P.:Automatic synthesis of specifications from the dynamic observation of reactive
programs. In: TACAS, pp. 321–333 (1997)

7. Boneh, A., Hofri, M.: The coupon-collector problem revisiteda survey of engineering problems and
computational methods. Stoch. Models 13(1), 39–66 (1997)

8. Botinčan,M., Babić, D.: Sigma*: symbolic learning of input-output specifications. In: POPL, pp. 443–456
(2013)

9. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function synthesis for bit-vector
relations. FMSD 43(1), 93–120 (2013)

10. de Fortuny, E.J., Martens, D.: Active learning-based pedagogical rule extraction. IEEE Trans. Neural
Netw. Learn. Syst. 26(11), 2664–2677 (2015)

11. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for deep neural networks.
arXiv preprint, arXiv:1709.09130 (2017)

12. Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L.: A general lower bound on the number of examples
needed for learning. Inf. Comput. 82(3), 247–261 (1989)

123

http://arxiv.org/abs/1709.09130

S. Jha et al.

13. Elizalde, F., Sucar, E., Noguez, J., Reyes, A.: Generating Explanations Based on Markov Decision Pro-
cesses, pp. 51–62 (2009)

14. Feng, C., Muggleton, S.: Towards inductive generalisation in higher order logic. In: 9th International
Workshop on Machine learning, pp. 154–162 (2014)

15. Godefroid, P., Taly, A.: Automated synthesis of symbolic instruction encodings from i/o samples. SIG-
PLAN Not. 47(6), 441–452 (2012)

16. Goldsmith, J., Sloan, R.H., Szörényi, B., Turán, G.: Theory revision with queries: horn, read-once, and
parity formulas. Artif. Intell. 156(2), 139–176 (2004)

17. Gurfinkel, A., Belov, A., Marques-Silva, J.: Synthesizing Safe Bit-Precise Invariants, pp. 93–108 (2014)
18. Harbers, M., Meyer, J.-J., van den Bosch, K.: Explaining simulations through self explaining agents. J.

Artif. Soc. Soc. Simul. 12, 6 (2010)
19. Hellerstein, L., Servedio, R.A.: On pac learning algorithms for rich boolean function classes. Theor.

Comput. Sci. 384(1), 66–76 (2007)
20. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: In: Oracle-guided component-based program synthesis. In:

ICSE, pp. 215–224. IEEE (2010)
21. Jha, S., Raman, V., Pinto, A., Sahai, T., Francis, M.: On learning sparse boolean formulae for explaining

AI decisions. In: NASA Formal Methods—9th International Symposium, NFM 2017, Moffett Field, CA,
USA, May 16–18, 2017, Proceedings, pp. 99–114 (2017)

22. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. In: Acta Informatica, Special
Issue on Synthesis (2016)

23. Jha, S., Seshia, S.A., Tiwari, A.: Synthesis of optimal switching logic for hybrid systems. In: EMSOFT,
pp. 107–116. ACM (2011)

24. Kearns, M., Li, M., Valiant, L.: Learning boolean formulas. J. ACM 41(6), 1298–1328 (1994)
25. Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae and finite automata. J.

ACM 41(1), 67–95 (1994)
26. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint framework for description and

prediction. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 1675–1684. ACM (2016)

27. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
28. Lecun, Y., Cortes, C.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
29. Lee, J., Moray, N.: Trust, control strategies and allocation of function in human–machine systems.

Ergonomics 35(10), 1243–1270 (1992)
30. Mansour, Y.: Learning boolean functions via the Fourier transform. In: Theoretical Advances in Neural

Computation and Learning, pp. 391–424 (1994)
31. Nau,D.,Ghallab,M., Traverso, P.:AutomatedPlanning: Theory&Practice.MorganKaufmannPublishers

Inc., San Francisco (2004)
32. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J. ACM 35(4), 965–984

(1988)
33. Raman, V.: Reactive switching protocols for multi-robot high-level tasks. In: IEEE/RSJ, pp. 336–341

(2014)
34. Raman, V., Lignos, C., Finucane, C., Lee, K.C.T., Marcus, M.P., Kress-Gazit, H.: Sorry Dave, I’m Afraid

I can’t do that: Explaining unachievable robot tasks using natural language. In: Robotics: Science and
Systems (2013)

35. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-Guided Quantifier Instan-
tiation for Synthesis in SMT, pp. 198–216 (2015)

36. Ribeiro, M.T., Singh, S., Guestrin, C.: Why Should I Trust You?: explaining the predictions of any
classifier. In: Proceedings of the 22nd ACMSIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 1135–1144. ACM (2016)

37. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining the predictions of any
classifier. In: KDD, pp. 1135–1144 (2016)

38. Robnik-Šikonja, M., Kononenko, I.: Explaining classifications for individual instances. IEEE Trans.
Knowl. Data Eng. 20(5), 589–600 (2008)

39. Russell, J., Cohn, R.: OODA loop. In: Book on Demand (2012)
40. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In:

HSCC, pp. 221–230 (2010)
41. Sankaranarayanan, S., Miller, C., Raghunathan, R., Ravanbakhsh, H., Fainekos, G.: A model-based

approach to synthesizing insulin infusion pumpusage parameters for diabetic patients. In:AnnualAllerton
Conference on Communication, Control, and Computing, pp. 1610–1617 (2012)

42. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. FMSD 32(1),
25–55 (2008)

123

http://yann.lecun.com/exdb/mnist/

Explaining AI Decisions Using Efficient Methods for Learning…

43. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature con-
tributions. KIS 41(3), 647–665 (2014)

44. Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing Ranking Functions from Bits and Pieces, pp. 54–70
(2016)

45. Yuan, C., Lim, H., Lu, T.-C.: Most relevant explanation in bayesian networks. J. Artif. Intell. Res. (JAIR)
42, 309–352 (2011)

46. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction
difference analysis. arXiv preprint arXiv:1702.04595 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1702.04595

	Explaining AI Decisions Using Efficient Methods for Learning Sparse Boolean Formulae
	Abstract
	1 Introduction
	2 Motivating Example
	3 Problem Definition
	3.1 Defining the Vocabulary for Explanation
	3.2 Explanation Inquiry and Response

	4 Learning Sparse Boolean Formula
	4.1 Learning Based on Binary Search in Hamming Space
	4.2 Learning Based on Random Walk in Boolean Hypercube
	4.3 Learning Boolean Formula φR with Given Support
	4.4 Impact of Incomplete Vocabulary

	5 Complexity Analysis
	5.1 Complexity of Binary Search in Hamming Space
	5.2 Complexity of Random Walk on Boolean Hypercube
	5.3 Complexity of Learning Sparse Boolean Formula

	6 Experiments
	6.1 Explaining A* Decisions
	6.2 Explaining Reactive Strategy Raman14
	6.3 Explaining Classification Error in MNIST mnistlecun

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgements
	References

