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Abstract Autonomous vehicles have found wide-ranging adoption in aerospace,
terrestrial as well as marine use. These systems often operate in uncertain en-
vironments and in the presence of noisy sensors, and use machine learning and
statistical sensor fusion algorithms to form an internal model of the world that
is inherently probabilistic. Autonomous vehicles need to operate using this uncer-
tain world-model, and hence, their correctness cannot be deterministically speci-
fied. Even once probabilistic correctness is specified, proving that an autonomous
vehicle will operate correctly is a challenging problem. In this paper, we address
these challenges by proposing a correct-by-synthesis approach to autonomous vehi-
cle control. We propose a probabilistic extension of temporal logic, named Chance
Constrained Temporal Logic (C2TL), that can be used to specify correctness re-
quirements in presence of uncertainty. C2TL extends temporal logic by including
chance constraints as predicates in the formula which allows modeling of per-
ception uncertainty while retaining its ease of reasoning. We present a novel au-
tomated synthesis technique that compiles C2TL specification into mixed integer
constraints, and uses second-order (quadratic) cone programming to synthesize op-
timal control of autonomous vehicles subject to the C2TL specification. We also
present a risk distribution approach that enables synthesis of plans with lower
cost without increasing the overall risk. We demonstrate the effectiveness of the
proposed approach on a diverse set of illustrative examples.
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1 Introduction

The rapid growth in AI techniques [14] and increase in computation power [24]
has fuelled a rapid extension in the degree of autonomy as well as accelerated the
adoption of these systems. Intelligent systems with varying degrees of autonomy,
from recommendation systems [45] to fully autonomous aerial vehicles [28], have
been widely adopted for controlling ground, air and under-water vehicles. These
systems are increasingly deployed in safety-critical applications, both in military
domains such as aerospace missions, search and rescue, and surveillance, as well
as in civilian infrastructure like factories and farms. Their increasing prevalence
makes it vital to be able to ensure the correctness of their operation in an efficient
and reliable manner. Currently, these systems are often designed manually, and
their certification relies on tests and extensive requirements on the design pro-
cess. These are complex systems with tightly-coupled components that implement
control, perception and logical decision-making, and proving the correctness of
manual design of these systems is challenging [41,32]. The difficulty of this task
is further amplified by the uncertain environment in which these systems operate,
and the inherent probabilistic nature of the statistical techniques used to observe
the environment. Further, the notion of correctness applied for electronic and soft-
ware systems are no longer sufficient due to the presence of inherent uncertainty
in environment and statistical machine learning algorithms used in perception. Ig-
noring such uncertainty is unrealistic and abstracting it as non-determinism leads
to impractically conservative design. We require a new approach to specify cor-
rectness requirements in presence of uncertainty, along with techniques to ensure
the satisfaction of these requirements by the autonomous systems. In this paper,
we address this challenge by defining a new specification language, Chance Con-
strained Temporal Logic (C2TL), that extends signal temporal logic to capture
perception uncertainty. We present a novel approach to designing autonomous
control algorithms that are guaranteed to satisfy C2TL properties.

An autonomous control system can be conceptually divided into two key sub-
systems: a perception pipeline to observe the world, and a control pipeline com-
prising high-level reasoning and low-level motion planning. Both these subsystems
are well-studied in the control and robotics literatures, and there has been a lot of
interest recently in quantifying uncertainty in perception [13] as well as control un-
der uncertainty [4]. The traditional approach to the design of autonomous systems
decouples perception uncertainty and control by using probabilistic thresholds in
perception to ignore low probability events and model higher probability events
using non-determinism. The control is designed with respect to this conservative
model. This decoupling leads to overly conservative control in practice, and also
makes it difficult to establish formal guarantees and prove safety of the overall
composed system with perception and control components. For example, given
a safety property that requires a vehicle to avoid obstacles and a probabilistic
obstacle perception system, it is impossible to satisfy the safety property deter-
ministically. Chance constraints [36] provide a natural way to specify probabilistic
correctness properties, but so far, their application has been limited to specifying
invariant-like properties. On the other hand, temporal logics such as computational
temporal logic (CTL) [19] and linear temporal logic (LTL) [33] have emerged as
effective specification languages for specifying and verifying dynamic behaviour
of hardware-software systems. Extensions of temporal logic for cyberphysical sys-
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tems include signal temporal logic (STL) [15], which allows expressing real-valued
dense-time temporal properties. STL has been used for verifying and synthesizing
automated control subject to complex specifications, including history-dependent
and timing requirements. STL does not model stochastic nature of the environ-
ment and perception subsystems used to observe the environment. The use of
noise variables to model uncertainty in dynamics has been deployed for stochas-
tic control [44,16,17] but they rely on uniform modelling of different sources of
uncertainty. Perception uncertainty affects only the estimate of current state and
does not contribute to uncertainty in temporal evolution. Perception uncertainty
is not a design artefact but instead, it arises out of physics constraints or quality of
available sensors and perception algorithms, and hence, they must be included in
specifying the correctness requirement of the overall system. There are also other
sources of uncertainty such as those arising from noisy prediction models which
affect not just the perception of current state but the predicted temporal evolution
of the environment.

Our goal is to devise a specification and synthesis framework for constructing
safe controllers that are aware of the probabilistic correctness guarantees of per-
ception subsystem, and enable guarantees on the overall autonomous system and
not just on the decoupled subsystems.

We propose chance-constrained temporal logic (C2TL) as an extension of tem-
poral logic, where the leaf predicates in the logic can be chance constraints. C2TL
is an effective specification language for the autonomous control of systems oper-
ating under perception uncertainty. We show that C2TL formulae can be compiled
into mixed integer constraints; thus, C2TL strikes the right balance between ex-
pressiveness and ease of reasoning. Second order cone programming can be used
to automatically synthesize optimal control satisfying the C2TL specifications. We
make the following contributions in this paper:

1. We define Chance Constrained Temporal Logic (C2TL) and demonstrate its
use to specify the correctness of autonomous vehicle system control.

2. We formulate the problem of synthesizing autonomous vehicle control subject
to C2TL specifications while optimizing a quadratic cost function; we reduce
this problem to a second order cone program that can be solved using scalable
tools such as CVXOPT [3].

3. We present a novel risk distribution approach that alleviates the conservative-
ness of the synthesized control for C2TL specifications and enables discovering
more optimal solutions without sacrificing correctness.

This paper is a significantly extended and revised version of a conference pa-
per [20]. In particular, it includes a novel risk distribution approach that allows
synthesis of control with lower cost while still satisfying the C2TL specifications.
The rest of the paper is organized as follows. We first present background and dis-
cuss related work in Section 2. We then describe the proposed extension of tempo-
ral logic with chance constraints in Section 3. The definition of chance-constraint
temporal logic is followed by the synthesis approach using a mixed-integer en-
coding and sum of cone programming in Section 4. We present the novel risk
distribution approach to enable less conservative synthesis of optimal control in
Section 5. We describe the experimental results on case-studies in Section 6 and
conclude in Section 7 by discussing limitations of existing approach and on going
work to address them.
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2 Background and Related Work

Projects such as the DARPA Urban Challenge [40] and the VisLab Intercontinental
Autonomous Challenge [9] have been instrumental in spurring the development
and maturation of autonomous vehicle technology. In addition to ground vehicles,
autopilots have also found applications in manned and unmanned aircrafts [18] as
well as under-water vehicles [37]. One key area where autonomous systems still
struggle is in dealing with unexpected situations and planning under uncertainty,
arising from stochastic environments or noisy perception. We briefly review the
relevant literature in perception, safe and stochastic control, and specification of
probabilistic properties to summarize the current state of the art.

Most autonomous systems learn about their environment using sensors such
as cameras and LIDAR units to infer the environment state, which is maintained
in the form of probabilistic beliefs [26,12,25]. Uncertainty in these probabilistic
beliefs arise from two sources. First, the environment states are often dynamic
and change over time. Second, the information gathered from sensors is often not
sufficient to exactly infer the environment state. As an example, consider a pop-
ular perception technique like simultaneous localization and mapping [5](SLAM),
which is used for determining the current position of an autonomous vehicle. The
estimated position of the vehicle and the coordinates of other entities in the map
are often assumed to have Gaussian noise. Aside from localization and mapping,
another critical perception challenge for autonomous vehicles is obstacle detection
and tracking [27,8]. Camera and laser range finders are used to locally detect and
avoid obstacles during navigation for a previously constructed map. This is par-
ticularly useful in the presence of dynamic objects whose locations are not fixed in
the environment map. The uncertainty in the parametric models representing the
obstacles is usually also modelled using Gaussian random variables. The proposed
C2TL specifications incorporate these Gaussian models of uncertainty in percep-
tion by allowing the predicates in the formulae to be chance constraints [36] over
Gaussian random variables.

Safe control of autonomous systems using reachability analysis has been well-
studied in literature where the specification is restricted to reach-avoid properties
requiring that a particular target state be reached while avoiding unsafe states [31,
30,43]. More recently, safe control optimization techniques have been developed
which allow exploration of control parameter space and online learning of optimal
controller while remaining safe [2,7]. These techniques rely on learning probabilis-
tic model of uncertainty either offline or online at runtime and computation of
reachable sets. Our approach is orthogonal to techniques for estimating uncer-
tainty and we focus on safe autonomous control given probabilistic guarantees on
the accuracy of the perception subsystem. Further, we consider more expressive
properties of the system and environment than reach-avoid properties. Controller
synthesis from temporal properties expressed in linear temporal logic (LTL) and
signal temporal logic (STL) have also been proposed for robotic applications. In
particular, automated synthesis of receding horizon control from STL properties
using mixed integer linear programming has proved to be an efficient and scalable
approach for controller synthesis with deterministic constraints [38,39]. We adopt
a similar constraint-solving based approach to controller synthesis from C2TL that
extends STL with probabilistic chance-constraints.



Chance-constrained temporal logic 5

The control of stochastic systems has also been extensively investigated [21,
35,34,10]. The goal of these techniques is to determine a control policy that maxi-
mizes the probability of remaining within a safe set during a finite time horizon [1].
This safe control problem is usually reformulated as a stochastic optimal control
problem with multiplicative costs over a controlled Markov chain. In contrast,
our goal is to satisfy a probabilistic temporal logic specification while optimizing
over a given cost metric. This can be naturally modelled using chance constrained
programs [11,29]. Chance constrained programming was originally introduced for
solving probabilistic constraints which guarantees constraint satisfaction up to a
specified probabilistic limit while optimizing a cost function. It is used for uncer-
tainty modeling in various engineering fields [23,48]. For a detailed recent survey
of the literature on chance constrained programming approaches, the interested
reader is directed to [36]. Here, we extend chance constraints to temporal logic
specifications. Another dimension along which we extend existing stochastic con-
trol techniques [47] is in our consideration of non-convex feasible spaces, which
is critical for autonomous vehicles operating in environments with obstacles. Re-
cently, there has been interest in modelling perception noise for stochastic control
particularly in context of autonomous vehicle control [48,47]. However, exten-
sion of these techniques to non-convex feasible spaces is critical to model realistic
environments of autonomous vehicles which could have multiple obstacles. Our
constraint-solving based formulation of synthesizing optimal control accomplishes
this without any explicit convex hull approximation.

Chance constraints [23] can be used to specify probabilistic invariants of the
system. Probabilistic computation tree logic and probabilistic linear temporal
logic [22] extend temporal logic and allow the quantification of uncertainty in the
satisfaction of temporal properties. Our work combines chance-constraint based
uncertainty specification with recent progress in specifying requirements for cyber-
physical systems. Signal temporal logic (STL) [15] has been proposed for specify-
ing behaviour of continuous and hybrid systems, because it combines dense time
modalities with numerical predicates over continuous state variables. C2TL ex-
tends STL to specify probabilistic temporal properties, by allowing predicates to
be chance constraints over continuous state variables rather than just real-valued
functions. The uncertainty is restricted to probabilistic predicates, and temporal
operators are not probabilistic; this is in contrast to other probabilistic extensions
of temporal logics [22]. We show that C2TL can be used to specify correctness
requirements for an autonomous vehicle under perception uncertainty. We also
present a reduction from C2TL constraints to mixed integer constraints. Thus,
C2TL provides a balance between expressiveness of the specification language and
efficiency of automated synthesis.

In the conference version of this paper [20], we defined the chance-constrained
temporal logic (C2TL) and presented an optimization based approach to synthesize
controllers for C2TL specification. This work focussed on ‘likely’ C2TL properties
(probability greater than 0.5) to present an efficient encoding to mixed integer
program. Recently, a similar extension of STL to probabilistic STL (PrSTL) was
independently and concurrently proposed by one of the authors [42] for C2TL
properties having no restriction on probability, albeit with twice the number of
auxiliary variables [20]. We elaborate on the definition of C2TL and encodings of
C2TL to mixed integer constraints in Section 3 and Section 4.
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3 Chance Constraint Temporal Logic

In this section, we first define Chance Constrained Temporal Logic (C2TL), and
then illustrate how the correctness of autonomous vehicle control can be speci-
fied using C2TL. We then describe how C2TL specifications can be compiled into
deterministic mixed integer conic constraints. We then formulate the problem of
synthesizing the correct control of autonomous systems as a second order cone
programming problem. The cost being optimized is quadratic and optimization is
done with respect to conic constraints that are bilinear in the state variables and
perception coefficients.

Notation: The correctness property is specified over the system state variables
X = {x1, x2, . . . , xn}, which represent the position of the vehicle, its velocity, ac-
celeration, orientation, angular velocities and other relevant parameters. The state
of the system at time t is denoted by xt.

In this work, half-planes form the basic unit of representation of knowledge ac-
quired through perception. This assumption is key to the reduction of the problem
to a mixed integer conic program, and is motivated by the observation that per-
ception algorithms often employ half-plane learning techniques such as Bayesian
linear regression and classifiers. For example, an obstacle can be perceived as an
intersection of half-planes which represent the convex hull of the obstacle. Half-
planes are represented as:

φlin : aixt + bi ≤ 0 or aixt + bi < 0

where the coefficients ai, bi are inferred by perception algorithms. Due to uncer-
tainty in perception, the coefficients are not deterministically known: rather, we
only know the probability distribution over the coefficients. Let Dom(ai), Dom(bi)
denote the domain of the coefficients, and p(ai), p(bi) denote the respective proba-
bility density functions. So, the constraints from perception are not deterministic,
but instead hold with an associated probability, that is,

Pr(aixt + bi ≤ 0) ≥ 1− δ or Pr(aixt + bi < 0) ≥ 1− δ

We denote the control inputs of the autonomous system, which are the values
to be synthesized, by U ; the value at each time instant t is ut. A trace of system
states and control values is denoted by τ : IR≥0 → X × U where τ(t) = (xt,ut).

Our definition of chance constrained temporal logic as a probabilistic extension
of signal temporal logic is motivated by two key observations:

– For specifications applied to autonomous systems, temporal aspects of cor-
rectness arise from mission requirements such as reaching specific positions in
sequence while staying away from particular regions. These temporal aspects
of mission requirements do not usually have any associated uncertainty.

– Perception gathers information about a particular instant of time, and uncer-
tainty in perception is hence reflected only in the predicates computed on the
system states at a given time, and not on the temporal operators.

We therefore introduce chance constraints at the atomic predicate level of our
logic. The syntax definition of C2TL is as follows:
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φdet := φlin | φlin ∧ φlin | ¬φlin
φcc := [Pr(φdet) ≥ 1− δ] | ¬φcc | ∼φcc | φcc ∧ φcc | φcc ∨ φcc | φccU[a,b]φcc,

where:

– linear predicate φlin over the variables v ⊆ X ∪ U is of the form

φlin(v) : aiv + bi ≤ 0 or aiv + bi < 0

– deterministic predicate φdet is a Boolean combination of linear predicates if
ai, bi are fixed constants.

– chance-constraint [11] is a probabilistic extension of deterministic predicates
and is of the form Pr(φdet) ≥ 1 − δ. where 0 ≤ δ ≤ 1 represents uncertainty
about whether the inequality holds, and the coefficients are random variables
with Gaussian probability distribution associated to them.

The set of coefficients that satisfy a deterministic predicate φdet over variables v
is denoted by R(φdet, v). So, the probability of satisfying φdet when the coefficients
are probabilistic is given by pc(φdet, v) =

∫
c∈R(φdet,v)

p(c)dc where c = (a, b).

C2TL admits the standard globally (G), eventually (F ) and until (U) operators
of temporal logic; here we restrict discussion to the until (U) operator, which can
be used to represent all of the others. The subscripts of the operators denote the
time interval associated with the property, as in STL. The satisfaction of a C2TL
formula over a trace τ at time t is defined recursively as follows:

τ(t) |= φlin ⇔ φlin(τ(t))

τ(t) |= φ1
lin ∧ φ2

lin ⇔ φ1
lin(τ(t)) ∧ φ2

lin(τ(t))

τ(t) |= ¬φlin ⇔ ¬φlin(τ(t))

τ(t) |= [Pr(φdet) ≥ 1− δ] ⇔ pc(φdet, τ(t)) ≥ 1− δ
τ(t) |= ¬[Pr(φdet) ≥ 1− δ] ⇔ pc(φdet, τ(t)) < 1− δ
τ(t) |= ∼[Pr(φdet) ≥ 1− δ] ⇔ τ(t) |= [Pr(¬φdet) ≥ 1− δ]

τ(t) |= φ1
cc ∧ φ2

cc ⇔ τ(t) |= φ1
cc ∧ τ(t) |= φ2

cc

τ(t) |= φ1
cc ∨ φ2

cc ⇔ τ(t) |= φ1
cc ∨ τ(t) |= φ2

cc

τ(t) |= φ1
ccU[a,b]φ

2
cc ⇔ ∃t1 t+ a ≤ t1 ≤ t+ b ∧ τ(t1) |= φ2

cc

∧ (∀t2 t ≤ t2 ≤ t1 ⇒ τ(t2) |= φ1
cc)

As a special case, when δ = 0, chance constraints become deterministic. Chance
constraints have two kinds of negations:

– logical negation denoted by ¬, and
– probabilistic negation denoted by ∼

For example, consider a deterministic formula [x > 0] and its logical negation
[x ≤ 0], and corresponding chance constraints φcc ≡ Pr([x > 0]) ≥ 1− δ and the
probabilistic negation ∼φcc ≡ Pr([x ≤ 0]) ≥ 1− δ. If δ = 0.8, then φcc ≡ Pr([x >
0]) ≥ 0.2, that is, Pr([x ≤ 0]) < 0.8. This is consistent with ∼φcc ≡ Pr([x ≤
0]) ≥ 0.2. Thus, it is possible for both φcc and its probabilistic negation ∼φcc to
be simultaneously true.
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The following theorem relates probabilistic negation and logical negation when
δ < 0.5. This case is relevant because it corresponds to “likely” chance constraints,
where the probability of violation is less than 0.5. In practice, most useful con-
straints obtained from perception have significantly high confidence and δ is very
small.

Theorem 1 If δ < 0.5, probabilistic negation implies logical negation, that is,
∼φcc ⇒ ¬φcc. If δ > 0.5, logical negation implies probabilistic negation.

Proof From the definition of C2TL formula, ¬φcc ≡ ¬[Pr(φdet) ≥ 1 − δ] and
∼φcc ≡ Pr(¬φdet) ≥ 1− δ.
Now, δ < 0.5 ≡ δ < 1 − δ. So, Pr(¬φdet) < δ ⇒ Pr(¬φdet) < 1 − δ, that is,
¬[Pr(¬φdet) < δ]⇐ ¬[Pr(¬φdet) < 1− δ] by contrapositivity.
¬[Pr(¬φdet) < 1− δ] ≡ Pr(¬φdet) ≥ 1− δ and so,
¬[Pr(¬φdet) < δ]⇐ Pr(¬φdet) ≥ 1− δ.
Further, Pr(¬φdet) < δ ≡ Pr(φdet) ≥ 1− δ and so,
¬[Pr(φdet) ≥ 1− δ]⇐ Pr(¬φdet) ≥ 1− δ, that is, ¬φcc ⇐ ∼φcc.
Hence, ∼φcc ⇒ ¬φcc when δ < 0.5.
The proof for the other case proceeds similarly with the direction of implication
reversed. ut

4 Automated Synthesis of Autonomous Vehicle Control

We now describe how the correctness properties of an autonomous system can
be specified using Chance Constrained Temporal Logic (C2TL). Any set of ob-
stacles can be approximated by an union of a finite number of convex polytopes.
The planes forming the convex polytopes are only probabilistically known, due to
perception uncertainty. A convex polytope is a conjunction of half-planes (linear
constraints), and can be represented as∧

i

(aixt + bi > 0)

where the coefficients ai ∼ N (aµi ,a
Σ
i ) are assumed to be Gaussian variables whose

mean and variance are estimated by the perception pipeline. Since the coefficients
are Gaussian, collision with obstacles cannot be ruled out deterministically. Let
δobs be the user-specified threshold for the maximum allowable probability of col-
lision with obstacles. This collision avoidance property is specified in C2TL as:

Pr(
∨
i

aixt + bi ≤ 0) ≥ 1− δobs

The property of avoiding multiple obstacles j is specified as:

Pr(
∧
j

∨
i

aijxt + bij ≤ 0) ≥ 1− δobs

We assume that the map consists of static and dynamic obstacles as well as
real or virtual walls that restrict the vehicle to be within a bounded region, but
outside of obstacle areas. Let aij be the coefficients of the obstacles and wij be
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the coefficients of the perceived walls. The unobstructed map with uncertainty can
thus be represented using the formula:

φmap :=[Pr(
∧
j

∨
i

aijxt + bij ≤ 0) ≥ 1− δobs]

∧ [Pr(
∧
j

∨
i

wijxt + bij ≤ 0) ≥ 1− δwall] where aij ∼ N (aµij ,a
Σ
ij)

represents the uncertain perception of obstacles, and wij ∼ N (wµ
ij ,w

Σ
ij) rep-

resents the uncertain perception of walls (which in practice includes uncertainty
in self-localization). Similar constraints can be added for other parameters of an
autonomous system such as constraints on speed or acceleration based on the
system’s current location in the map.

Apart from the safe navigation requirement represented by the global property
G(φmap), a second set of useful specifications on autonomous vehicles corresponds
to the mission requirements. For example, the vehicle must reach its final destina-
tion within some time-bound tmax. Because of uncertainty in perception, we can
not guarantee this property deterministically. Given a user-specified probability
threshold δmission of failing to achieve the mission goals, the goal of reaching the
destination is specified as F[0,tmax](Pr(x = xdest) ≥ 1 − δmission). Other exam-
ples include the requirement that an autonomous car wait at a stop sign until all
cross-traffic arriving at the intersection before it passes, and that an aircraft flies
straight without turning until it reaches the safe velocity range for turning. These
properties can be specified using until properties, φ1U[0,t]φ2. We denote the set of
mission constraints by φmission.

The overall specification for the safe control of autonomous system is thus
φmap∧φmission: that is, the system achieves the temporal specification of mission
goals while remaining safe with respect to the map. We note that the focus of this
paper is on autonomous vehicles, but C2TL can also be used to specify behavior
of other autonomous systems such as robotic manipulators, and the techniques
presented in this paper extend beyond this application domain.

Next, we present a translation of C2TL constraints over Gaussian random
variables to deterministic constraints. The constraints are linear with respect to
system (state) variables and conic overall due to uncertain coefficients. Note that
without half-planes as our basic unit, these constraints may well be non-linear,
but the rest of our results would still hold, and the problem could be solved
using a solver capable of handling such non-linear constraints. The first part of
the translation deals with temporal logic formulae and Boolean combinations of
atomic constraints. The second part of translation focuses on elementary chance
constraints, and reduces those to deterministic constraints.

We focus on chance constraints with violation probability threshold less than
0.5. As discussed in Section 3, probabilistic negation is not the same as logical
negation when violation probability (δ) can be 0.5 or more, and hence, we will need
two {0, 1} integer variables to represent the truth value of each chance constraint,
to account for four cases depending on the truth value of the chance constraint
and its probabilistic negation. We summarize the key idea presented in [42] for
such an encoding. For each formula φ, two {0, 1} integer variables pφ and qφ are
introduced. We demonstrate how conjunction and negation are enforced as follows:

– Negation (φ = ¬ψ) : pφ ≤ qψ and qφ ≤ pψ.
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– Conjunction (φ = ψ1 ∧ ψ2) : pφ ≤ pψ1 , pφ ≤ pψ2 and qφ ≤ qψ1 + qψ2 .

For likely (violation probability δ < 0.5) chance constraints, one {0, 1} integer
variable is sufficient by Theorem 1. Similar to the STL encoding provided in [38,

39], we introduce Boolean, that is, {0, 1} integer variables mφ
t for each constraint

φ and time t. These Boolean variables are related in the same way as for the STL
encoding.

– Negation: m¬φt = 1−mφ
t

– Conjunction: mφ1∧φ2

t = min(mφ1

t ,m
φ2

t )

– Disjunction: mφ1∨φ2

t = max(mφ1

t ,m
φ2

t )

– Until: m
φ1U[a,b]φ

2

t = maxt′∈[t+a,t+b](min(mφ2

t′ ,mint′′∈[t,t′](m
φ1

t′′ )))

The next challenge is in translating the probabilistic chance constraints over Gaus-
sian variables to deterministic mixed integer constraints. Because of the reduction
in Theorem 1, we need to consider chance constraints only of the form:

φelemcc ≡ Pr(
∧
j

Nj∨
i

aijxt + bij ≤ 0) ≥ 1− δtm

We need to conservatively over-approximate φelemcc using mixed integer constraints
which are satisfiable only if φelemcc is satisfiable. φelemcc can be rewritten as

Pr(
∧
i,j

aijxt + bij −Mzij ≤ 0) ≥ 1− δtm ∧
∧
j

(∑
i

zij < Nj ∧ zij ∈ {0, 1}

)
,

where M is a sufficiently large positive number. This transformation uses the big-
M reduction common in non-convex optimization, see [6] for examples. The above
equivalence holds because at least one zij is 0 for each j since

∑
i zij < Nj and

zij ∈ {0, 1}, and thus, at least one of the constraints in
∨Nj

i aijxt + bij ≤ 0 must
be true for each j.

Next, we use Boole’s inequality to decompose the conjunction in the proba-
bilistic chance constraint as follows.

Pr(
∧
i,j

aijxt + bij −Mzij ≤ 0) ≥ 1− δtm ⇔ Pr(
∨
i,j

aijxt + bij −Mzij > 0) < δtm.

Further, Pr(
∨
i,j

aijxt + bij −Mzij > 0) <
∑
i,j

Pr(aijxt + bij −Mzij > 0)

since the probability of union of events is less than the sum of the individual
probabilities of the occurrence of each event.

Next, we introduce new variables 0 ≤ εij ≤ 1 with
∑
i,j εij < δtm, and conser-

vatively approximate the chance constraint as:

Pr(
∧
j

Nj∨
i

aijxt + bij ≤ 0) ≥ 1− δtm ⇐
∧
i,j

Pr(aijxt + bij −Mzij ≤ 0) ≥ 1− εij

∧
∧
ij

0 ≤ εij ≤ 1 ∧
∑
ij

εij < δtm ∧
∧
j

(
∑
i

zij < Nj) ∧
∧
i,j

zij ∈ {0, 1}
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With N =
∑
j Nj , we choose εij = δtm/N , which corresponds to uniform

risk allocation among the probabilistic constraints above. Since aij is a Gaussian
random variable, the linear combination of Gaussian variables aijxt + bij −Mzj
is also Gaussian. Further, the uniform risk allocation ensures that the violation
probability bounds are constant.

So, Pr(aijxt + bij −Mzj ≤ 0) ≥ 1 − εij can be translated to a deterministic
constraint

zj = 0⇒ µijxt + bij − ErfInv(εij)||Σ1/2
ij xt||2 ≤ 0

where µij and Σij are mean and variances of the coefficients aij , and ErfInv is
the Gaussian inverse error function computed using the table for Gaussian dis-
tributions, as discussed in [47]. Consequently, the probabilistic chance constraints
are reduced to a set of deterministic constraints. This completes the translation of
C2TL constraints to a set of deterministic constraints over the system variables.

The following theorem summarizes the conservative nature of the above trans-
lation. Given the control specification for an autonomous vehicle ψC2TL, the above
translation generates ψMI which conservatively approximates ψC2TL.

Theorem 2 Given C2TL constraints ψC2TL, the translation presented above will
generate a set of mixed integer constraints ψMI such that ψMI ⇒ ψC2TL.

The conservativeness of ψMI arises from the following approximations:

– We use the sum of the probabilities of chance constraints to upper-bound the
probability of their disjunction. If the constraints are completely independent
of each other, the sum of their individual probabilities is exactly the probability
of their disjunction. The approximation is small if the constraints are mostly
independent, which is often the case for specifying autonomous vehicle systems,
since obstacles usually do not overlap.

– We use a uniform risk allocation of the violation probability bounds for each
individual constraint. In Section 5, we present a risk distribution technique to
alleviate the conservativeness introduced by uniform risk allocation.

Thus, the translation of C2TL constraints to mixed integer constraints is con-
servative, but the approximation introduced is expected to be reasonably tight.
The goal of synthesizing optimal control for autonomous vehicles is to automat-
ically generate the control inputs u. The control inputs applied at time k are
denoted by uk. Often, the dynamical system can be approximated by linearizing
the system around the current point of operation and using model predictive or re-
ceding horizon control. A detailed discussion on model predictive control for signal
temporal logic can be found in [38]. We employ a similar approach here.

A finite parametrization of a linear system assuming piecewise constant control
inputs yields the following difference equation:

xk+1 = Akxk +Bkuk,

where xk ∈ Rnx is the system state in nx dimensions, uk ∈ Rnu denotes the
nu control inputs, and Ak, Bk are coefficients representing linear system dynamics
around the state xk. We consider the control problem over a bounded time horizon
T , that is, 0 ≤ k ≤ T .
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Further, the control inputs uk at all time steps k are required to be in a convex
feasible region Fu, that is,

Fu ≡
Ng∧
i=1

(gTi u ≤ ci);
∧
k

uk ∈ Fu

where the convex region Fu is represented as intersection of Ng half-planes.

The state variables are required to satisfy the autonomous vehicle correctness
specification ψC2TL

ap , that is, xk |= ψC2TL
ap for all k. We can conservatively ap-

proximate the autonomous vehicle correctness specification by ψMI
ap as discussed

earlier, that is, xk |= ψMI
ap ⇒ xk |= ψC2TL

ap

In addition to correctness specification, the synthesized vehicle control is also
expected to minimize a user-specified cost function J(x,u). We restrict the cost
function J to be quadratic in order to ensure that solving the control synthesis
problem is computationally efficient. Quadratic functions can capture cost metrics
of the form

∑
i u
†
kU
†Uuk + x†kS

†Sxk with appropriate scaling vectors U and S,
where † denotes the transpose of a matrix. These can represent metrics such as
fuel consumption as well as metrics on the vehicle path.

Problem 1 (Autonomous Vehicle Control)

arg min
u

J(x,u)

s.t. xk+1 = Akxk + Bkuk, k = 1 . . . T,uk ∈ Fu,xk |= ψC2TL
ap

Problem 2 (Conservative Autonomous Control)

arg min
u

J(x,u)

s.t. xk+1 = Akxk + Bkuk, k = 1 . . . T,uk ∈ Fu,xk |= ψMI
ap

Recall that every solution to Problem 2 also solves Problem 1. Moreover, for a
bounded time horizon T and a quadratic cost function, since all the constraints are
linear in system variables and conic due to the presence of uncertain coefficients,
the conservative autonomous control problem can be solved using scalable second
order (quadratic) cone programming tools such as CVXOPT [3]. The following
theorem summarizes the correctness guarantee:

Theorem 3 The solution to Problem 2 is sound with respect to Problem 1: if
control inputs are synthesized for the conservative problem, they are guaranteed to
satisfy the specified correctness property ψC2TL

ap .

This theorem follows from Theorem 2 because xk |= ψC2TL
ap ⇐ xk |= ψMI

ap . Note,
however, that the proposed synthesis method (i.e. solving the more efficiently solv-
able conservative problem using second order cone programming) is incomplete for
the autonomous control problem due to the conservative approximation of C2TL
constraints (ψC2TL

ap ⇐ ψMI
ap ). The incompleteness relates to degree of conservative

approximation introduced in the translation of C2TL constraints to mixed integer
constraints.
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5 Risk Distribution For Optimal Control

In Section 4, we presented our approach to derive autonomous control from high-
level chance-constraint temporal logic (C2TL) specifications using a conservative
deterministic approximation. One of the sources of approximation is a uniform
risk allocation. We show how optimization based risk distribution can be used to
make the synthesis approach less conservative for convex C2TL properties. In case
of non-convex properties, we fix the value of the z variables used in the convex
encoding to their assignment in the computation of optimal solution assuming a
fixed allocation presented in Section 4. Risk distribution approach presented here
allocates risk non-uniformly by adjusting the solution for uniform risk. The key
intuition is that autonomous control has naturally different levels of risks along a
trajectory; a vehicle has higher risk when it is close to an obstacle. Thus, a synthesis
approach which uses non-uniform risk distribution would discover more optimal
control compared to uniform risk allocation. Recall the definition of problem 1
where the chance-constraint temporal logic has been compiled into conjunction
of individual chance-constraints using the algorithm presented in Section 4. We
modify the definition by including the risks ε = (ε11, ε12, . . . , ε21, ε22, . . .) allocated
to each constraint as a parameter of the cost.

arg min
u

J(x,u, ε) s.t. xk+1 = Akxk + Bkuk, k = 1 . . . T,uk ∈ Fu,∧
i

µikxk + bik − ErfInv(εik)||Σ1/2
ik xk||2 ≤ 0 for each k

The uniform risk allocation corresponds to setting εik = δtm/N for all i, k. We
show that the cost function J is monotonous in the εik parameters.

Theorem 4 ∂J∗

∂εik
≤ 0 for all i, k. The optimal cost J∗, computed by solving the

above optimization function, monotonically decreases with increase in εik.

Proof Let ε1 and ε2 be two risk assignments. We say that ε1 ≤ ε2 if and only if
ε1ik ≤ ε2ik for all i, k. We denote the feasible region for (x,u) corresponding to ε1

and ε2 as R(ε1) and R(ε2). Now, the derivative of the inverse error function for
Gaussian distribution is given by d(ErfInv)/d(ε) = 1/2

√
π exp [ErfInv(x)2] > 0.

Clearly, ErfInv monotonically increases with ε. Thus,

ε1ik ≤ ε2ik ⇒
(
µikxk + bik − ErfInv(ε1ik)||Σ1/2

ik xk||2 ≤ 0⇒

µikxk + bik − ErfInv(ε2ik)||Σ1/2
ik xk||2 ≤ 0

)
So, ε1 ≤ ε2 ⇒ R(ε1) ⊆ R(ε2). The optimal cost J∗(x,u, ε2) is found by searching
over R(ε2) while the optimal cost J∗(x,u, ε1) is found by searching over a superset
R(ε1) and so, J∗(x,u, ε2) ≤ J∗(x,u, ε1) if ε1 ≤ ε2. Thus, J∗(x,u, ε) is a decreasing
function in ε. ut

Our approach for risk distribution relies on incremental revision of risk alloca-
tion using the monotonicity result in Theorem 4. Let ε1 be the uniform initial risk
assignment, that is, ε1ik = δtm/N for all i, k, with the corresponding optimal cost
J(ε1). We need to find a revision sequence of risk assignments ε1, ε2, ε3, . . . with
corresponding optimal costs J(ε1) ≤ J(ε2) ≤ J(ε3) . . . ≤ J(εn). We can terminate
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this sequence after fixed number of iterations or when a numerical convergence
criteria is met, that is, J(εn)− J(εn−1) ≤ ∆ for some fixed threshold ∆.

We show how εp+1 can be constructed from εp to generate the above sequence.
For all the i, k constraints that are not active with εp, that is,

µikxk + bik < ErfInv(εpik)||Σ1/2
ik xk||2

we find εp
′

ik < εpik such that the following is satisfied:

µikxk + bik ≤ ErfInv(εp
′

ik)||Σ1/2
ik xk||2 ≤ ErfInv(εpik)||Σ1/2

ik xk||2

The inactive constraints are still inactive but they have become tighter. For the

active constraints, the risk associated to them are kept the same, that is, εp
′

ik = εpik.

So, the feasibility region has become strictly smaller for risk distribution εp
′

and
the same set of constraints are active as those for εp. So, the optimum cost will
remain the same, that is, J(εp) = J(εp

′
).

After the risks have been tightened, the total cumulative risk remaining to

relax the active constraints is given by ρ =
∑
ik ε

p
ik −

∑
ik ε

p′

ik. If the number of
active constraints is M , then we can relax the risk in each of the active constraints
by ρ/M to obtain εp+1 = εp

′
+ρ/M . For all the inactive constraints, εp+1 = εp

′
. So,

εp+1 < εp
′
. Due to the monotonicity theorem, J(εp+1) ≤ J(εp

′
). Thus, J(εp+1) ≤

J(εp).
The formal algorithm for risk distribution is presented below. We initialize with

uniform risk. The numerical convergence criteria is used to terminate the risk dis-
tribution algorithm. The algorithm terminates if the improvement in the computed
cost is less than 1% of the current cost. The algorithm also terminates if all the
constraints are tight which implies that a locally optimal risk assignment has been
found. It is possible that none of the constraints associated with probabilistic risk
is tight because the solution is constrained by other deterministic constraints. The
algorithm terminates in this case because risk redistribution would not improve
the cost.

Algorithm: Non-uniform Risk Distribution: algorithm starts with an initializa-
tion to uniform risk assignment, total number of constraints is N

ε1ik ← δtm/N for all i, k, p← 1, NotConverged← true
Solve the optimization problem with εp to obtain the cost J(εp)
while NotConverged do
Nactive ← number of active constraints in the optimization problem, ρ← 0
for each inactive constraint (i, k) do

εp+1
i,k ← 0.5 εpi,k + 0.5 Erf((µikxk + bik)/||Σ1/2

ik xk||2)

// Satisfies µikxk + bik ≤ ErfInv(εp+1
ik )||Σ1/2

ik xk||2 ≤ ErfInv(εpik)||Σ1/2
ik xk||2

ρ← ρ+ εp+1 − εp
δ ← ρ/Nactive
for each active constraint (i, k) do

εp+1
i,k ← εpi,k + δ

Solve the optimization problem with εp+1 to obtain the cost J(εp+1)
NotConverged← J∗(εp+1) ≤ 1.01× J∗(εp) and Nactive 6= 0 and Nactive 6= N
p← p+ 1

return εp
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6 Case Studies

We now experimentally demonstrate the effectiveness of our approach. All exper-
iments were done on a Intel Core-i7 2.9 GHz x 8 machine with 16 GB memory.
Where applicable, we use a baseline comprised of LQG-based motion planning
algorithm [46] and a Monte Carlo sampling-based search algorithm to find an op-
timal trajectory over the uncertain world model. Our technique is more general
than sampling-based approaches because we can enforce temporal logic specifica-
tions beyond reachability goals common in classical motion planning. Additionally,
the uncertainty in our problem lies within the perceived world model rather than
the system evolution.

Navigation in an uncertain map:
The first case-study considers the problem of navigation in an uncertain map from
[49]. Parameter values and other details of the map can be found in [49]. A point
mass with two modes – moving forward and turning – is expected to navigate
safely in the map shown in Figure 1. The walls in the map and the obstacle in the
center are modeled using probabilistic constraints that incorporate the uncertainty
in perception. The uncertain walls are illustrated in the map by sampling values
of the coefficients and drawing the corresponding walls. The probabilistic safety
requirement in this case is a global property requiring that the vehicle avoid the
walls and obstacles with a very high probability. The objective function being
optimized is quadratic in the final state as well as the control inputs:

f(x,u) = 50(xN − xdest)
T (xN − xdest) + 0.001

∑
i

uTi ui,

where xdest is the destination state (2, 1). Observe that although the cost function
drives the optimization to minimize the path length, the generated path goes
around the obstacle, taking the longer path. This is because the shorter path
would violate the C2TL safety constraints due to the uncertainty in the location
of the obstacles and walls. This is illustrated in Figure 1.

Fig. 1: Navigation in an uncertain
map

When compared to the approach in
[49], the method proposed in this paper
takes 4.1 seconds instead of 25.2 seconds
to compute a sequence of control inputs.
Monte Carlo simulation was used to es-
timate the probability of constraint vio-
lation. For each simulation, the location
of the walls and the obstacles was de-
terminized by sampling from the corre-
sponding Gaussian distribution. We then
checked whether the automatically gen-
erated path intersected with the walls
or obstacles, violating the safety require-
ment. When the violation probability in
the C2TL specification was set to 0.001,
Monte Carlo trials did not find a sin-
gle instance out of 10000 simulations in
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which the property was violated. We in-
creased the violation probability to 0.01, and found 8 out of 10000 simulations
that violated the probability; i.e., the estimated violation probability was 0.0008.
This demonstrates how the proposed approach conservatively approximates the
specified probabilistic constraint, generating a motion plan that satisfies the prob-
abilistic safety property.

Lane Change:
The second case-study is on the synthesis of control for an autonomous vehicle
such as a car, trying to pass a tractor-trailer in an adjacent lane, as described
in [50]. The trailer can probabilistically switch into the passing car’s lane. If the
car is ahead of the trailer when the trailer initiates a lane change, then the car
should accelerate, and if the car is behind the trailer when the trailer initiates
the lane change, the car should decelerate. If the trailer switches lanes when it
is just adjacent to the car, the car has no action to prevent an accident. Thus, a
completely safe course of action is not possible for the autonomous car and it can
only try to keep the risk below a user-specified threshold by passing the trailer
quickly and not staying in the unsafe region for long. The uncertainty arises due
to a probabilistic model of when the trailer will switch lanes, based on the car’s
observations of its behavior. This case-study assumes a static jump Markov model
of this uncertainty, as shown in Figure 3 of [50]. The safety specification requires
that the passing car is either decelerating and behind the trailer until the trailer
make the lane switch, or the trailer remains in its lane until the passing the car is
accelerating and ahead of the trailer. We also require the separation between the
car and trailer to be above a safe limit with a high probability. The threshold of
violing the specification was set to 0.015. The cost function was the time spent
behind the trailer but not in the same lane. Autopilot generation took 5.8 seconds,
and Monte Carlo simulations of the generated autopilot showed that the actual
threshold of violation is 0.0004.

Fig. 2: (a) Runtime Comparison (b) Accuracy Comparison

In order to compare with LQG-based sampling techniques, we change the cost
function to incorporate temporal logic requirements by penalizing the car for com-
ing close to trailer, and rewarding it for either passing the trailer or traveling be-
hind it in the same lane if the trailer changed lanes. In Figure 2(a), we compare
runtime of the synthesis technique for each specified violation probability. While
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our proposed technique’s runtime is not very sensitive to the violation probability,
the runtime of the sampling-based approach increases sharply due to the increase
in the number of required simulation runs. In Figure 2(b), we present the violation
probability observed in Monte Carlo simulations when both approaches are given
the same runtime, by restricting the number of simulation runs. All bars above the
diagonal line satisfy the probabilistic constraint, while bars below it do not (note
the negative log scale on y-axis as well as x-axis). No violations were found for our
proposed technique for error bounds 10−6 and lower. Thus, the proposed method
always satisfies the specification, whereas sampling fails to do so for smaller error
bounds.

Passing a Vehicle Using Oncoming Traffic Lane:
The third case-study is from recent work by Xu et al [51]. In this case-study, a
vehicle’s lane is blocked and it needs to move into the lane of oncoming traffic to go
around the obstacle. The perception pipeline on the vehicle estimates the position
and the speed of oncoming traffic before deciding to get into the oncoming traffic
lane. The dynamics and parameters are described in [51], and we discuss only
the results here. Due to uncertainty in perception, we can not deterministically
guarantee safe maneuvering of the vehicle, but we require that the probability of
collision with oncoming traffic or with the obstacle in the vehicle’s lane is below a
threshold of ε. The uncertainty in perception of the speed of the oncoming traffic
is represented by the standard deviation sd of the random variable representing
the speed. We modify the cost function from the original case-study, because we
use C2TL constraints to specify the safety conditions. The cost function measures
the time taken to re-enter the lane after crossing the obstacle.
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(a) Illustration of Synthesized Control (b) Runtime vs − log(ε)

Fig. 3: Left: Positions of the autonomous vehicle (circle) and oncoming traffic (rect-
angle) at different (1-6) time steps are shown. The red rectangle is the obstacle.
Right: Runtime comparison for different violation probability bounds.

We illustrate the qualitative nature of the synthesized control in Figure 3(a).
For violation probability ε = 0.0001, the control synthesized by the sampling-based
technique in time comparable to our approach (4 seconds) is not probabilistically
safe. The control synthesized using the proposed technique relies on speeding up
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and getting around the obstacle before the oncoming traffic. When we increase the
standard deviation in the perception of the speed of the oncoming traffic by 10X,
the control synthesized by our approach picks a less optimum, higher-cost solu-
tion in order to meet the safety violation probability requirement, which slows the
vehicle and waits for the oncoming traffic to pass before going around the obsta-
cle. Figure 3(b) shows that the runtime of the sampling-based approach increases
rapidly with a decrease in ε, while it does not change significantly for our technique.

Demonstrating Effectiveness of Risk Distribution:
In the last case study, we demonstrate how risk distribution allows synthesis of
more optimal control than uniform risk allocation in the navigation map shown in
Figure 4. The cost metric is the length of the path and non-uniform risk allocation
improves the cost by 6%. The total risk ε = 0.01. The total number of iterations
of the risk distribution algorithm was 4 and the total runtime was 119 seconds.

Fig. 4: Comparison between uniform risk and risk distribution: dotted blue line
is trajectory with uniform risk and solid black line is trajectory with non-uniform
risk allowing it to come closer to obstacle

7 Conclusion

In this paper, we present a formal approach to synthesizing autonomous vehicle
control in presence of perception uncertainty. Chance constrained temporal logic
(C2TL) is proposed to capture correctness specifications in the presence of uncer-
tainty. Our technique relies on approximating the probabilistic C2TL specification
constraints with conservative deterministic constraints, and then, solving the con-
trol problem using quadratic cone programming. The autonomous vehicle control
synthesized by our technique is guaranteed to satisfy the probabilistic specifica-
tions, as demonstrated in several case studies.
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13. Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recogni-
tion, volume 31. Springer Science & Business Media, 2013.

14. Thomas G Dietterich and Eric J Horvitz. Rise of concerns about AI: reflections and
directions. Communications of the ACM, 58(10):38–40, 2015.
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