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Abstract. In this paper, we consider the problem of learning Boolean
formulae from examples obtained by actively querying an oracle that
can label these examples as either positive or negative. This problem
has received attention in both machine learning as well as formal meth-
ods communities, and it has been shown to have exponential worst-case
complexity in the general case as well as for many restrictions. In this
paper, we focus on learning sparse Boolean formulae which depend on
only a small (but unknown) subset of the overall vocabulary of atomic
propositions. We propose an efficient algorithm to learn these sparse
Boolean formulae with a given confidence. This assumption of sparsity
is motivated by the problem of mining explanations for decisions made
by artificially intelligent (AI) algorithms, where the explanation of indi-
vidual decisions may depend on a small but unknown subset of all the
inputs to the algorithm. We demonstrate the use of our algorithm in auto-
matically generating explanations of these decisions. These explanations
will make intelligent systems more understandable and accountable to
human users, facilitate easier audits and provide diagnostic information
in the case of failure. The proposed approach treats the AI algorithm
as a black-box oracle; hence, it is broadly applicable and agnostic to
the specific Al algorithm. We illustrate the practical effectiveness of our
approach on a diverse set of case studies.

1 Introduction

The rapid integration of robots and other intelligent agents into our industrial
and social infrastructure has created an immediate need for establishing trust
between these agents and their human users. The long-term acceptance of Al
will depend critically on its ability to explain its actions, provide reasoning be-
hind its decisions, and furnish diagnostic information in case of failures. This
is particularly true for systems with close human-machine coordination such as
self-driving cars, care-giving and surgical robots. Decision-making and planning
algorithms central to the operation of these systems currently lack the ability to
explain the choices and decisions that they make. It is important that intelligent
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agents become capable of responding to inquiries from human users. For exam-
ple, when riding in an autonomous taxi, we might expect to query the Al driver
using questions similar to those we would ask a human driver, such as “why
did we not take the Bay Bridge”, and receive a response such as “there is too
much traffic on the bridge” or “there is an accident on the ramp leading to the
bridge or in the middle lane of the bridge.” These explanations are essentially
propositional formulae formed by combining the user-observable system and the
environment states using Boolean connectives.

Even though the decisions of intelligent agents are the consequence of al-
gorithmic processing of perceived system and environment states [31,25], the
straight-forward approach of reviewing this processing is not practical. First,
AT algorithms use internal states and intermediate variables to make decisions
which may not be observable or interpretable by a typical user. For example,
reviewing decisions made by the A* planning algorithm [21] could reveal that
a particular state was never considered in the priority queue. But this is not
human-interpretable, because a user may not be familiar with the details of
how A* works. Second, the efficiency and effectiveness of many Al algorithms
relies on their ability to intelligently search for optimal decisions without de-
ducing information not needed to accomplish the task, but some user inquiries
may require information that was not inferred during the original execution of
the algorithm. Third, artificial intelligence is often a composition of numerous
machine learning and decision-making algorithms, and explicitly modelling each
one of these algorithms is not practical. Instead, we need a technique which can
treat these algorithms as black-box oracles, and obtain explanations by observ-
ing their output on selected inputs. These observations motivate us to formulate
the problem of generating explanations as an oracle-guided learning of Boolean
formula where the Al algorithm is queried multiple times on carefully selected
inputs to generate examples, which in turn are used to learn the explanation.

Given the observable system and environment states, S and E respectively,
typical explanations depend on only a small subset of elements in the overall
vocabulary V' = S U E, that is, if the set of state variables on which the ex-
planation ¢ depends is denoted by support(¢) C V, then |support(¢)| << |V|.
This support or its exact size is not known a priori. Thus, the explanations
are sparse formulae over the vocabulary V. The number of examples needed
to learn a Boolean formula is exponential in the size of the vocabulary in the
general case [20, 19, 8]. Motivated by the problem of learning explanations, we
propose an efficient algorithm that exploits sparsity to efficiently learn sparse
Boolean formula. Our approach builds on recent advances in oracle-guided in-
ductive formal synthesis [17,16, 18]. We make the following three contributions:

— We formulate the problem of finding explanations for decision-making Al
algorithms as the problem of learning sparse Boolean formulae.

— We present an efficient algorithm to learn sparse Boolean formula where the
size of required examples grows logarithmically (in contrast to exponentially
in the general case) with the size of the overall vocabulary.

— We illustrate the effectiveness of our approach on a set of case-studies.
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2 DMotivating Example

We now describe a motivating example to illustrate the problem of providing
human-interpretable explanations for the results of an AT algorithm. We consider
the A* planning algorithm [21], which enjoys widespread use in path and motion
planning due to its optimality and efficiency. Given a description of the state
space and transitions between states as a weighted graph where weights are used
to encode costs such as distance and time, A* starts from a specific node in the
graph and constructs a tree of paths starting from that node, expanding paths
in a best-first fashion until one of them reaches the predetermined goal node. At
each iteration, A* determines which of its partial paths is most promising and
should be expanded. This decision is based on the estimate of the cost-to-go to
the goal node. We refer readers to [21] for a detailed description of A*. Typical
implementations of A* use a priority queue to perform the repeated selection
of intermediate nodes. The algorithm continues until some goal node has the
minimum cost value in the queue, or until the queue is empty (in which case no
plan exists). Figure 1 depicts the result of running A* on a 50x50 grid, where
cells that form part of an obstacle are colored red. The input map (Figure 1
(a)) shows the obstacles and free space. A* is run to find a path from lower
right corner to upper left corner. On the output map (Figure 1 (b)), cells on
the returned optimal path are colored dark blue. Cells which ever entered A*’s
priority queue are colored light cyan, and those that never entered the queue are
colored yellow.

Fig. 1. (a) Input map to A* (b) Output showing final path and internal states of A*

Consider the three cells X,Y,Z marked in the output of A* in Figure 1 (b). An
observer might want to enquire why points X, Y or Z were not selected for the
optimal path generated by A*. Given the output and logged internal states of the
A* algorithm, we know that Y was considered as a candidate cell and discarded
due to non-optimal cost whereas X was never even considered as a candidate.
But, this is not a useful explanation because a non-expert observing the behavior
of a robot cannot be expected to understand the concept of a priority queue, or
the details of how A* works. Looking at point Z, we notice that neither X nor



7 was ever inserted into the priority queue; hence, both were never considered
as candidate cells on the optimal path. When responding to a user query about
why X and Z were not selected in the optimal path, we cannot differentiate
between the two even if all internal decisions and states of the A* algorithm
were logged. So, we cannot provide the intuitively expected explanation that Z
is not reachable due to certain obstacles, while X is reachable but has higher
cost than the cells that were considered. This is an example of a scenario where
providing explanation requires new information that the Al algorithm might not
have deduced while solving the original decision making problem.

3 Problem Definition

The class of Al algorithms used in autonomous systems include path planning
algorithms, discrete and continuous control, computer vision and image recog-
nition algorithms. All of these algorithms would be rendered more useful by the
ability to explain themselves. Our goal is to eventually develop an approach to
generate explanations for the overall system, but we focus on individual compo-
nents in this paper rather than the overall system. For example, the path planner
for a self-driving car takes inputs from machine learning and sensor-fusion al-
gorithms, which in turn receive data from camera, LIDAR and other sensors.
The processed sensor data often has semantic meaning attached to it, such as
detection of pedestrians on the road, presence of other cars, traffic distribution
in a road network, and so on. Given this semantic information, the reason for a
particular path being selected by the path planner is often not obvious: this is
the sort of explanation we target to generate automatically.

A decision-making ATl algorithm Alg can be modelled as a function that com-
putes values of output variables out given input variables in, that is,

Alg :in — out

The outputs are decision variables, while the inputs include environment and
system states as observed by the system through the perception pipeline. While
the decision and state variables can be continuous and real valued, the inquiries
and explanations are framed using predicates over these variables, such as com-
parison of a variable to some threshold. Let the vocabulary of atomic predicates
used in the inquiry from the user and the provided explanation from the system
be denoted by V. We can separate the vocabulary V into two subsets: Vg used
to formulate the user inquiry and Vg used to provide explanations.

Vo ={q1,92,---¢m},Vr = {r1,r2,... 15} where g;,r; : in U out — Bool

Intuitively, V is the shared vocabulary that describes the interface of the Al
algorithm and is understood by the human-user. For example, the inquiry vo-
cabulary for a planning agent may include propositions denoting selection of a
waypoint in the path, and the explanation vocabulary may include propositions
denoting presence of obstacles on a map. An inquiry ¢¢ from the user is an
observation about the output (decision) of the algorithm, and can be formulated
as a Boolean combination of predicates in the vocabulary Vg. Hence, we can
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denote it as ¢g(Vq) where the predicates in Vg are over the set in U out, and
the corresponding grammar is:

Q= dQ NPq | 9@V ¢q |m¢q | ¢ where ¢; € Vg

Similarly, the response ¢r(Vr) is a Boolean combination of the predicates in the
vocabulary Vr where the predicates in Vg are over the set in U out, and the
corresponding grammar is:

¢r:=0OrNOR | RV ORr | PR | 75 where r; € Vg

Definition 1. Given an Al algorithm Alg and an inquiry 6o(Vg), ¢r(Vr) is a
necessary and sufficient explanation when ¢r(Vgr) <= éo(Vg) where Vg, Vo
are predicates over inU out as explained earlier, and out = Alg(in). ¢r(Vg) is
a sufficient explanation when ¢r(Vr) = ¢o(Vg).

If the algorithm out = Alg(in) could be modelled explicitly in appropriate
logic, then the above definition could be used to generate explanations for a
given inquiry using techniques such as satisfiability solving. However, such an
explicit modelling of these algorithms is currently outside the scope of existing
logical deduction frameworks, and is impractical for large and complicated Al
systems even from the standpoint of the associated modelling effort. The Al
algorithm Alg is available as an executable function; hence, it can be used as an
oracle that can provide an outputs for any given input. This motivates oracle-
guided learning of the explanation from examples using the notion of confidence
associated with it.

Definition 2. Given an Al algorithm Alg and an inquiry ¢o(Vq), ¢r(Vr) is
a necessary and sufficient explanation with confidence k when Pr(¢r(Vg) <=
do(Vq)) > K where Vg,V are predicates over in U out as explained earlier,
out = Alg(in) and 0 < k < 1. ¢r(Vg) is a sufficient explanation with confidence
k when Pr(¢r(Vr) = ¢o(Vq)) > k.

The oracle used to learn the explanation is implemented using the Al algo-
rithm. It runs the AI algorithm on a given input in; to generate the decision
output out;, and then marks the input as a positive example if ¢g(out;) is true,
that is, the inquiry property holds on the output. It marks the input as a nega-
tive example if ¢ (out;) is not true. We call this an introspection oracle, and it
marks each input as either positive or negative.

Definition 3. An introspection oracle Oy, a1 for a given algorithm Alg and
inquiry ¢q takes an input in; and maps it to a positive or negative label, that is,
Opo a1 - in = {D, 0},

Oy mg(ing) = @ if po(Vq(out;)) and Oy, aig(ing) = © if ~pg(Vg(out;)), where
out; = Alg(in;), and Vg(out;) is the evaluation of the predicates in Vg on out;

We now formally define the problem of learning Boolean formula with spec-
ified confidence k given an oracle to label examples.



Definition 4. The problem of oracle-guided learning of Boolean formula from
examples is to identify (with confidence k) the target Boolean function ¢ over
a set of atomic propositions V by querying an oracle O that labels each input
in; (which is an assignment to all variables in'V) as positive or negative {®, S}
depending on whether ¢(in;) holds or not, respectively.

We make the following observations which relates the problem of finding
explanations for decisions made by Al algorithms to the problem of learning
Boolean formula.

Observation 1 The problem of generating explanation ¢ for the Al algorithm
Alg and an inquiry ¢g is equivalent to the problem of oracle-guided learning of
Boolean formula using oracle Oy, 14 as described in Definition 4.

¢[ri] denotes the restriction of the Boolean formula ¢ by setting r; to true
in ¢ and ¢[F;] denotes the restriction of ¢ by setting r; to false. A predicate r;
is in the support of the Boolean formula ¢, that is, r; € support(¢) if and only

if ¢[ri] # ¢[ri).

Observation 2 The explanation ¢r over a vocabulary of atoms Vg for the
Al algorithm Alg and a user inquiry ¢g is a sparse Boolean formula, that is,

|support(¢r)| << |Vr|.

These observations motivate the following problem definition for learning
sparse Boolean formula.

Definition 5. Boolean function ¢ is called k-sparse if |support(¢r)| < k. The
problem of oracle-guided learning of k-sparse Boolean formula from examples is
to identify (with confidence k) the target k-sparse Boolean function ¢ over a
set of atomic propositions V by querying an oracle O that labels each input in;
(which is an assignment to all variables in V) as positive or negative {®, S}
depending on whether ¢(in;) holds or not, respectively.

Further, the explanation of decisions made by an Al algorithm can be gen-
erated by solving the problem of oracle-guided learning of k-sparse Boolean for-
mula. In the following section, we present a novel approach to efficiently solve
this problem.

4 Learning Explanations as Sparse Boolean Formula

Our proposed approach to solve the k-sparse Boolean formula learning problem
has two steps:

1. In the first step, we find the support of the explanation, that is, support(¢r) C
Vgr. This is accomplished using a novel approach which requires a small num-
ber of runs (logarithmic in |Vg|) of the Al algorithm Alg.
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2. In the second step, we find the Boolean combination of the atoms in Vg,
which forms the explanation ¢r. This is accomplished by distinguishing in-
put guided learning of propositional logic formula which we have earlier used
for the synthesis of programs [16].

Before delving into details of the above two steps, we introduce additional rel-
evant notations. Recall that the vocabulary of explanation is Vg = {r1,ra,..., 1}
Given any two inputs in; and ing, we define the difference between them as fol-
lows.

diff(inl,ing) = {Z ‘ ri(inl) 75 rl(mg)}
Next, we define a distance metric d on inputs as the size of the difference set,
that is,
d(inl, ’Lng) = |diff(in1, Zn2)|

Intuitively, d(inq,ins) is the Hamming distance between the n-length vectors
that record the evaluation of the atomic predicates r; in Vi. We say that two
inputs iny,iny are neighbours if and only if d(iny,ins) = 1. We also define a
partial order < on inputs as follows:

iny < ing iff ri(ing) = ri(ing) for all1 <i<n

Given an input in and a set J C {1,2,...,n}, a random J-preserving muta-
tion of in, denoted mutset(in, J), is defined as:

mutset(in, J) = {in'|in’ € in and r;(in") = r;(in) for all j € J}

Finding the support: We begin with two random inputs in,ins on which
the oracle Oy, a1 returns different labels, say it returns positive on in; and
negative on iny without loss of generality. Finding such in,ins can be done by
sampling the inputs and querying the oracle until two inputs disagree on the
outputs. The more samples we find without getting a pair that disagree on the
label, the more likely it is that the Boolean formula being used by the oracle to
label inputs is a constant (either true or false). We later formalize this as a
probabilistic confidence. Given the inputs iny, ins , we find J = diff(ing,ing) =
{i1,42,...,4;} on which the inputs differ with respect to the vocabulary Vi =
{ri,re,...,7n}. We partition J into two subsets J; = {i1,42,...,%;/2} and
Jo = {ijy2)41,9)1/2)425 - - - i1} The two sets J; and Jo differ in size by at most
1. The set of inputs that are halfway between the two inputs w.r.t the Hamming
distance metric d defined earlier is given by the set bisect(ing,ing) defined as:

bisect(iny,ing) = {in’| Vj € Jy r;(in) iff rj(in1),Vj € Jo r;(in’) iff r;(ing)}

Satisfiability solvers can be used to generate an input in’ from bisect(ing,ins).
The oracle Oy, n1g is run on in’ to produce the corresponding label. This label
will match either the label for the input in; or that of the input ing. We discard
the input whose label matches in’ to produce the next pair of inputs, that is,

(inqg,in’) if Opo.a1g(in’) # Opg a1g(inz)
(iTLI, ’LTLQ) Zf O¢Q ,Alg(in’) # O¢Q7A1g(in1)

where in’ € bisect(ing,ins)

introspect(ing,ing) = {



Starting from an initial pair of inputs on which O, ag produces different
labels, we repeat the above process, considering a new pair of inputs at each iter-
ation until we have two inputs in;, iny that are neighbours, with diff(in,ins) =
{j}. Hence, r; € Vg is in the support of the explanation ¢r. We add this to the
set of variables V;,,. We repeat the above process to find the next variable to add
to the support set. For example, consider a 2-sparse Boolean formula 1V xo over
the vocabulary set x1, xs, x3, x4, 5. Given two random samples (T,F, T,F,F) and
(F,F,F, T, T) - the first is labelled positive by oracle O and the second is negative.
The diff set is {1,3,4,5} and the bisect produces a new example (T,F, T, T, T)
which is labelled positive. So, the next pair is (T,F, T, T, T) and (F,F,F, T, T). The
bisect now produces new example (T,F,F, T, T) which is labelled positive. Now,
the diff set is a singleton set {1}. So, z; is in the support set of ¢g. This is
repeated to find the full support {x1,x2}. The efficiency of the introspection
process to obtain each variable is summarized in Lemma 1.

Lemma 1. The introspective search for each new variable r; € Vg, takes at
most O(Inn) queries to Oy, ng-

Proof. The size of the difference set J = diff(iny,ins) for any inputs inq, ing is
at most n for a vocabulary ¢g of size n. The i-th call to introspect reduces the
size of the difference set as follows: |J(i)| < [J(i — 1)|/2 + 1. Thus, the number
of calls to introspect before the difference set is singleton and the two inputs
are neighbours, obtained by solving the above recurrence equation, is O(Inn).

This introspective search for variables in the support set Vy,, is repeated till
we cannot find a pair of inputs iny,ins on which the oracle produces different
outputs. We check this condition probabilistically using Lemma 2.

Lemma 2. If m random samples iny,ing, ..., in,, from mutset(in,J) produce
the same output as input ‘in’ for the oracle Oy, mg where ¢r is k-sparse, then
the probability that all mutations in’ € mutset(in, J) produce the same output is
at least k, where m = 28 In(1/(1 — k)).

Proof. 1f all the mutations in’ € mutset(in, J) do not produce the same output,
then the probability of the Oracle O¢Q7A1g differing from the output of in for
any random sample in’ is at least 1/2F since the size of the set mutset(in, J) is
at most s = 2¥. So,

(1-1/s)">1—r <el"/Im>1_k(sincel —x <e*)
< (=1/s)m > In(l — k) ©m < s In(1/(1 — k))

We can now define sample(Qy,, a1g, in, J, k) that samples m = 2¥In(1/(1 — k))
inputs from the set mutset(in, J) and generates two inputs on which the oracle
Oy, .a1¢ disagrees and produces different outputs. If it cannot find such a pair
of inputs, it returns L. The overall algorithm for finding the support of the
explanations ¢z with probability k is presented in Algorithm 1.1 using the oracle
Ogp.a1g- It is a recursive algorithm which is initially called with a randomly
generated input in and an empty set J. Notice that the support of a sufficient
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explanation can be found by making the recursive call on only one of the two
inputs, that is, getSupport(QOy, mg, in1,J, k) or getSupport(Oy, ng, in2, J, k)
instead of both.

Algorithm 1.1 Introspective computation of Vy ,: getSupport(Qy, ag, in, J, k)

if sample(Oy, ng,in, J,x) = L then

return {} // The J-restricted Boolean formula is constant with probability x.
else

(in1,ing) < sample(Opg mg, in, J, k)

while |diff(in1,in2)| # 1 do

in1,in2 < introspect(ing, in2)
r; is the singleton element in diff(ini,ing), J < J U {i}
return {r;} U getSupport(Os, aig, in1, J, k) U getSupport(Oe g, mg, 102, J; k)

Theorem 1. The introspective computation of the support set Vy,, of variables
of the k-sparse Boolean formula ¢r defined over the vocabulary of size n using
at most O(2¥ In(n/(1 — k))) ezamples.

Proof. Each variable in Vg, can be found using an introspective search that
needs at most O(Inn) examples according to Lemma 1. So, the while loop in
Algorithm 1.1 makes at most O(Inn) queries. In Lemma 2, we showed that the
maximum number of examples needed for sample is O(2F In(1/(1 — x)). The
recursion is repeated at most O(2¥) times. Thus, the overall algorithms needs at
most O(2%* (In(1/(1 — x)) + Inn)), that is, O(2%* In(n/(1 — k))) examples.

Learning Boolean formula ¢g: Learning a Boolean formula that forms the
explanation ¢ for the given query ¢ is relatively straight-forward once the vari-
ables Vy, which form the support of the Boolean formula have been identified.
Efficient techniques have been developed to solve this problem in the context of
program synthesis, and we adopt a technique based on the use of distinguishing
inputs proposed by us in [16]. The algorithm starts with a single random input
iny. The oracle Oy, a14 is queried with the example and it is marked positive or
negative depending on the label returned by the oracle. A candidate explanation

% is generated which is consistent with the positive and negative examples seen
so far. Then, the algorithm tries to find an alternative consistent explanation ¢%.
If such an alternate explanation ¢% cannot be found, the algorithm terminates
with ¢% as the final explanation. If ¢% is found, we find an input which distin-
guishes ¢% and ¢% and query the oracle with this new input in order to mark
it as positive or negative. This refutes one of the two explanation formulae R
and R*. We keep repeating the process until we converge to a single Boolean
formula. Algorithm 1.2 summarizes this learning procedure.

Theorem 2. The overall algorithm to generate k-sparse explanation ¢r for a
given query ¢q takes O(2% In(n/(1 — k))) queries to the oracle, that is, the
number of examples needed to learn the Boolean formula grows logarithmically
with the size of the vocabulary n.
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Algorithm 1.2 Learning ¢r given the vocabulary V. and oracle Oy, a1g

Randomly sample an input ing
if Oy a1¢(in0) = © then
Et<ETU {’Lno}
else
E~ < E~ U{ing}
¢% = Boolean formula consistent with E*, £~
while Alternative ¢% consistent with ET, E~ exists do
Generate distinguishing input in that satisfies (¢% A “d%) V (6% A ~0FR)
if O(;,Q,Alg(in) = @ then
ET < Et U {in}
else
E- < E- U{in}
¢% = Boolean formula consistent with E*, £~
return ¢%

Proof. The first-step to compute the support set V. of the explanation ¢ takes
O(2% In(n/(1—k))) queries and after that, the learning of explanation ¢r takes
O(2%) queries. So, the total number of queries needed is O(2¥ In(n/(1 — k))).

Thus, our algorithm adopts a binary search like procedure using the Ham-
ming distance metric d to find the support of the Boolean formula over a vocab-
ulary of size n using a number of examples that grow logarithmically in n. After
the support has been found, learning the Boolean formula can be accomplished
using the formal synthesis based approach that depends only on the size of the
support set and not on the vocabulary size n. Algorithms that do not exploit
sparsity have been previously shown to need examples that grow exponentially
in n [20, 19] in contrast to the logarithmic dependence on n of the algorithm pro-
posed here. The proposed algorithm is very effective for sparse Boolean formula,
that is, £ << n, which is often the case with explanations.

5 Experiments

We begin by describing the results on the motivating example of A* presented
in Section 2. The vocabulary is Vg = {on;; for each cell ¢, j in the grid } where
on;; denotes the decision that 4, j-th cell was selected to be on the final path,
and —on;; denotes the decision that the 7, j-th cell was not selected to be on
the final path. The vocabulary Vg = {obst;;} for each cell 4,j in the grid
where obst;; denotes that the cell 4, j has an obstacle and —obst;; denote that
the cell 4,5 is free. The explanation query is: “Why were no points in 25 <
i < 50,7 = 40 (around z) not considered on the generated path?” The inquiry
framed using Vg is Ags<;<50 (0ni,40). A sufficient explanation for this inquiry
is obstag 32 Aobstar 32 with x set to 0.9. This is obtained in 2 minutes 4 seconds
(48 examples). The second query is for the area around x: A, 7(07444)
and the sufficient explanation obtained is obstg 17 A obsty 1s in 2 minutes 44
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seconds (57 examples). The third query for area around y is Aj<;<5 —(onis)
and the corresponding explanation is obsty 17 A obsty 15 which was obtained in
1 minutes 48 seconds (45 examples). Given the 177 obstacles, a naive approach
of enumerating all possible explanations would require 1.9 x 10'®® runs of A*
which is clearly infeasible in each of these three cases. Even if we assumed that
the number of explanations is 2 (but did not know which two variables are in
the support set), there are more than 15,000 cases to be considered.

°
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Fig. 2. Execution of reactive strategy for particular sequence of door closings. Each
Robot i is initially assigned to goal Area ¢, but they can swap if needed to achieve the
global goal (each marked Area must eventually get one robot). Brown lines indicate
closed doors preventing the robots’ motion. Time steps depicted are 0, 3, 4 and 24.

Explaining reactive strategy [27] : We also applied our approach to a
reactive switching protocol for multi-robot systems generated according to the
approach described in [27]. The task involves 4 robots operating in the workspace
depicted in Figure 2. In the beginning, each robot is assigned the corresponding
area to surveil (i.e. Robot ¢ is assigned to Area ). Starting from their initial
positions, they must reach this region. However, in response to the opening and
closing of doors in the environment at each time step, they are allowed to swap
goals. As can be seen from the Figure 2, robots 1 and 2 swap goals because
the top door closes, and robots 3 and 4 swap goals because the bottom door is
closed. They stand by these decisions even though the doors later reopen. The
simulation takes 24 time steps for all the robots to reach their final goals. The vo-
cabulary is Vg = {final;; for each robot i and area j}, where final;; denotes
that robot ¢ ended up in area j. The vocabulary Vi = {doortep+,d00Tpor ¢,
dooriest,t,d00T igne ¢ }, Where dooryep; denotes that the door between the top
and middle row of areas is closed at time ¢, dooriest,; denotes that the door
between the left and middle column of areas is closed at time ¢, etc. We pose the
query, “Why did Robot 1 end up in Area 27”7, i.e. finalys. Starting with the orig-
inal input sequence and one in which no door-related events occur, the generated
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explanation is dooryet 3, which is obtained in 0.76 seconds, and 7 introspective
runs of the protocol on mutated inputs (door activity sequences). The second
query was, “Why did Robot 3 not end up in Area 37”7, or ~finalsz. This took
0.61 seconds and 6 runs to generate ”, dooryep 4. Given that there are 4 doors
and 24 time steps, a naive approach of enumerating all possible explanations
would require (24)%* = 7.9 x 10%® runs of the reactive protocol.

Explaining classification error in MNIST [22] : MNIST database of
scanned images of digits is a common benchmark used in literature to evaluate
image classification techniques. MNIST images were obtained by normalization
of original images into greyscale 28x28 pixel image. We consider a k-NN clas-
sifier for k=9 as the machine learning technique. Some of the test images are
incorrectly identified by this technique and we show one of these images in Fig-
ure 3 where 4 is misidentified as 9. We deploy our technique to find explanations
for this error. The k-NN classifier uses voting among the k-nearest neighbours to
label test data. We show the nearest neighbour with label ‘9’ to the misclassified
image in the figure below. This image of 4 had 6 neighbours which were labelled
‘9’. The oracle for generating explanations works as follows: If the number of
neighbours of the image labelled ‘9’ decreases from 6 (even if the final label from
the k-NN classifier does not change), the oracle marks the image as positive,
and negative, otherwise. The vocabulary of explanation is formed by 4x4 pixel
blocks (similar to superpixels in [30]) being marked completely dark or clear
(this corresponds to predicate abstraction of greyscale pixels). The set of atomic
propositions in the support of the explanation is illustrated in the third figure
by manually picking assignment values to support variables for purpose of illus-
tration. The last two figures show images which are filtered by two conjunctions
in the generated explanation. The generation of the explanation took 3 minutes
48 seconds and required 58 examples where we initialized the algorithm with the
images of 4 and 9 in the figure below.

4 94 ¢4

Fig. 3. Left to right: Misclassified image of ‘4’, closest image of ‘9’, changing all pix-
els corresponding to support of explanations, changing pixels for one of the sufficient
explanation, changing pixels for another sufficient explanation
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6 Related Work

Our approach relies on learning logical explanations in the form of sparse Boolean
formula from examples that are obtained by carefully selected introspective sim-
ulations of the decision-making algorithm. The area of active learning Boolean
formula from positive and negative examples has been studied in literature [19, 1]
in both exact and probably approximately correct (PAC) setting. Exact learn-
ing Boolean formula [20, 3] requires a number of examples exponential in the
size of the vocabulary. Under the PAC setting, learning is guaranteed to find an
approximately correct concept given enough independent samples [2,24, 26]. It
is known that k-clause conjunctive normal form Boolean formula are not PAC
learnable with polynomial sample-size, even though monomials and disjunctive
normal form representations are PAC learnable [26,8]. Changing the represen-
tation from CNF to DNF form can lead to exponential blow-up. In contrast,
we consider only sparse Boolean formula and our goal is to learn the exact
Boolean formula with probabilistic confidence, and not its approximation. Effi-
cient learning techniques exist for particular classes of Boolean formulae such as
monotonic and read-one formulae [12,15], but explanations do not always take
these restricted forms, and hence, our focus on sparse Boolean formulae is better
suited for this context.

Another related research area is the newly emerged field of formal synthe-
sis, which combines induction and deduction for automatic synthesis of systems
from logical or black-box oracle specifications [16,17]. Unlike active learning,
formal synthesis is also concerned with defining techniques for the generation
of interesting examples and not just its inductive generalization, much like our
approach. While existing formal synthesis techniques have considered comple-
tion of templates by inferring parameters [4, 29, 33], composition of component
Boolean functions or uplifting to bitvector form [16, 13,36, 7], inferring trans-
ducers and finite state-machines [6,5,11], and synthesis of invariants [34, 32],
our work is the first to consider sparsity as a structural assumption for learning
Boolean formulae.

The need for explanations of Al decisions to increase trust of decision-making
systems has been noted in the literature [23]. Specific approaches have been in-
troduced to discover explanations in specific domains such as MDPs[9], HT'Ns[14]
and Bayesian networks[37]. Explanation of failure in robotic systems by detecting
problems in the temporal logic specification using formal requirement analysis
was shown to be practically useful in [28]. Inductive logic programming [10] has
also been used to model domain-specific explanation generation rules. In con-
trast, we propose a domain-independent approach to generate explanations by
treating the decision-making AI algorithm as an oracle. Domain-independent
approaches have also been proposed in the Al literature for detecting sensitive
input components that determine the decision in a classification problem [35,
30]. While these approaches work in a quantitative setting, such as measuring
sensitivity from the gradient of a neural network classifier’s ouput, our approach
is restricted to the discrete, qualitative setting. Further, we not only detect sen-
sitive inputs (support of Boolean formulae) but also generate the explanation.
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7 Conclusion and Future Work

We proposed a novel algorithm that uses a binary-search like approach to first
find the support of any sparse Boolean formula followed by a formal synthesis
approach to learn the target formula from examples. We demonstrate how this
method can be used to learn Boolean formulae corresponding to the explanation
of decisions made by an Al algorithm. This capability of self-explanation would
make Al agents more human-interpretable and decrease the barriers towards
their adoption in safety-critical applications of autonomy. We identify two di-
mensions along which our work can be extended. First, our approach currently
uses a predicate abstraction to Boolean variables for learning explanations. We
plan to extend our technique to a richer logical language such as signal temporal
logic for explanations involving real values. Second, we need to extend our ap-
proach to infer multiple valid explanations in response to an inquiry. This work
is a first step towards using formal methods, particularly, formal synthesis to
aid artificial intelligence by automatically generating explanations of decisions
made by Al algorithms.
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