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Abstract. Autonomous vehicles have found wide-ranging adoption in
aerospace, terrestrial as well as marine use. These systems often operate
in uncertain environments and in the presence of noisy sensors, and use
machine learning and statistical sensor fusion algorithms to form an in-
ternal model of the world that is inherently probabilistic. Autonomous
vehicles need to operate using this uncertain world-model, and hence,
their correctness cannot be deterministically specified. Even once proba-
bilistic correctness is specified, proving that an autonomous vehicle will
operate correctly is a challenging problem. In this paper, we address these
challenges by proposing a correct-by-synthesis approach to autonomous
vehicle control. We propose a probabilistic extension of temporal logic,
named Chance Constrained Temporal Logic (C2TL), that can be used to
specify correctness requirements in presence of uncertainty. We present
a novel automated synthesis technique that compiles C2TL specification
into mixed integer constraints, and uses second-order (quadratic) cone
programming to synthesize optimal control of autonomous vehicles sub-
ject to the C2TL specification. We demonstrate the effectiveness of the
proposed approach on a diverse set of illustrative examples.

1 Introduction

Intelligent systems with varying degrees of autonomy, from recommendation
systems [34] to fully autonomous aerial vehicles [23], have been widely adopted
for controlling ground, air and under-water vehicles. These systems are increas-
ingly deployed in safety-critical applications, both in military domains such as
aerospace missions, search and rescue, and surveillance, as well as in civilian in-
frastructure like factories and farms. Their increasing prevalence makes it vital
to be able to ensure the correctness of their operation in an efficient and reliable
manner. Currently, these systems are often designed manually, and their certi-
fication relies on tests and extensive requirements on the design process. These
are complex systems with tightly-coupled components that implement control,
perception and logical decision making, and proving the correctness of manual
designs is challenging [33, 26]. The difficulty of this task is further amplified by
the uncertain environment in which these systems operate, and the inherent
probabilistic nature of the statistical techniques used to observe the environ-
ment. In this paper, we address this challenge by defining a new specification



2 S. Jha and V. Raman

language, Chance Constrained Temporal Logic (C2TL), that extends linear tem-
poral logic to capture uncertainty in environment and perception. We present a
novel approach to designing autonomous control algorithms that are guaranteed
to satisfy C2TL properties.

An autonomous control system can be conceptually divided into two key
subsystems: a perception pipeline to observe the world, and a control pipeline
comprising high-level reasoning and low-level motion planning. Both these sub-
systems are well-studied in the control and robotics literatures, but the quantifi-
cation of uncertainty in perception [14] and control under uncertainty [4] remain
challenging. The traditional approach to the design of autonomous systems de-
couples perception uncertainty and control by using probabilistic thresholds in
perception, and building a conservative world model: the control is designed with
respect to this conservative model. This decoupling leads to overly conservative
control in practice, and also makes it difficult to establish formal guarantees
and prove safety of these systems. For example, it is clear that any qualitative
Boolean property would be violated with non-zero probability in a setting with
perception uncertainty modeled using Gaussian noise. Chance constraints [31]
provide a natural way to specify probabilistic correctness properties, but have
so far only be shown useful for specifying invariant-like properties. On the other
hand, temporal logics such as signal temporal logic (STL) [15] and linear tempo-
ral logic (LTL) [27] have emerged as effective specification languages for verifying
and synthesizing automated control subject to complex specifications, including
history-dependent and timing requirements.

C2TL extends temporal logic with chance constraints, thus providing an
effective specification language for the autonomous control of systems operating
under uncertainty. We show that C2TL formulae can be compiled into mixed
integer constraints; thus, C2TL strikes the right balance between expressiveness
and ease of reasoning. Quadratic cone programming can be used to automatically
synthesize optimal control satisfying the C2TL specifications.
We make the following contributions:
1. We define Chance Constrained Temporal Logic (C2TL) and demonstrate its

use to specify correctness of autonomous vehicle system control.

2. We formulate the problem of synthesizing autonomous vehicle control subject
to C2TL specifications while optimizing a quadratic cost function; we reduce
this problem to a second order (quadratic) cone program that can be solved
using scalable tools such as CVXOPT [3].

3. We demonstrate the effectiveness of our approach on a diverse set of exam-
ples.

2 Background and Related Work

Projects such as the Defense Advanced Research Projects Agency (DARPA) Ur-
ban Challenge [32] and the VisLab Intercontinental Autonomous Challenge [10]
have been instrumental in spurring the development and maturation of au-
tonomous vehicle technology. One key area where autonomous systems still
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struggle is in dealing with uncertainty, arising from stochastic environments
or noisy perception. Most autonomous systems learn about their environment
using sensors such as cameras and LIDAR units to infer the environment state,
which is maintained in the form of probabilistic beliefs. Uncertainty in these
probabilistic beliefs arise from two sources [21, 25, 13, 20]. First, the environment
states are often dynamic and change over time. Second, the information gathered
from sensors is often not sufficient to exactly infer the environment state. As an
example, consider a popular perception technique like simultaneous localization
and mapping [5](SLAM), which is used for determining the current position of
an autonomous vehicle. The estimated position of the vehicle and the coordi-
nates of other entities in the map are often assumed to have Gaussian noise.
Aside from localization and mapping, another critical perception challenge for
autonomous vehicles is obstacle detection and tracking [22, 9]. Camera and laser
range finders are used to locally detect and avoid obstacles during navigation
for a previously constructed map. This is particularly useful in the presence of
dynamic objects whose locations are not fixed in the environment map. The
uncertainty in the parametric models representing the obstacles is usually also
modeled using Gaussian random variables. The proposed C2TL specifications
incorporate these Gaussian models of uncertainty in perception by allowing the
predicates in the formulae to be chance constraints [31] over Gaussian random
variables.

The control of stochastic systems has been extensively investigated, begin-
ning with the work of Pontryagin [28] and Bellman [7], and extending to more
recent literature [17, 30, 29, 11]. Its applications include optimal guidance for
spacecrafts [2] and flight-controllers [6]. The focus has been on the safety prob-
lem, where the goal is to determine a control policy that maximizes the prob-
ability of remaining within a safe set during a finite time horizon [1]. This safe
control problem is usually reformulated as a stochastic optimal control problem
with multiplicative costs over a controlled Markov chain. In contrast, our goal
is to satisfy a probabilistic temporal logic specification while optimizing over a
given cost metric. This can be naturally modeled using chance constrained pro-
grams [12, 24], used for uncertainty modeling in various engineering fields [19,
37]. For a detailed recent survey of the literature on chance constrained program-
ming approaches, the interested reader is directed to [31]. Here we extend these
approaches to temporal logic specifications. Another dimension along which we
extend existing stochastic control techniques [36] is in our consideration of non-
convex feasible spaces, which is critical for autonomous vehicles operating in
environments with obstacles.

Recent work has developed scalable, optimization-based methods for the au-
tomatic synthesis of controllers from temporal logic specifications with deter-
ministic constraints [16]. Signal temporal logic (STL) [15] has been proposed for
controller synthesis, because it combines dense time modalities with numerical
predicates over continuous state variables. C2TL extends STL to specify prob-
abilistic temporal properties, by allowing predicates to be chance constraints
over continuous state variables rather than just real-valued functions. The un-
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certainty is restricted to probabilistic predicates, and temporal operators are
not probabilistic; this is in contrast to other probabilistic extensions of temporal
logics [18]. We show that C2TL can be used to specify correctness requirements
for an autonomous vehicle under perception uncertainty. We also present a re-
duction from C2TL constraints to mixed integer constraints which are linear in
the state variables. Thus, C2TL provides a balance between expressiveness of
the specification language and efficiency of automated synthesis.

3 Automated Synthesis of Autonomous Vehicle Control

We first define Chance Constrained Temporal Logic (C2TL), and then illustrate
how the correctness of autonomous vehicle control can be specified using C2TL.
We then describe how C2TL specifications can be compiled into deterministic
mixed integer conic constraints. We then formulate the problem of synthesizing
the correct control of autonomous systems as a second order cone programming
problem. The cost being optimized is quadratic and optimization is done with
respect to conic constraints that are bilinear in the state variables and percep-
tion coefficients.

Notation: The correctness property is specified over the system state variables
X = {x1, x2, . . . , xn}, which can represent the position of the vehicle, its veloc-
ity, acceleration, orientation, angular velocities and other relevant parameters.
The domain of X is denoted Dom(X), and is usually a subset of IRn. The state
of the system at time t is denoted by xt ∈ Dom(X).

In this work, half-planes form the basic unit of representation of knowledge
acquired through perception. This is motivated by the observation that percep-
tion algorithms often employ half-plane learning techniques such as Bayesian
linear regression and classifiers. For example, an obstacle can be perceived as
an intersection of half-planes which represent the convex hull of the obstacle.
Half-planes are represented as φlin : aixt + bi ≤ 0 or aixt + bi < 0, where the
coefficients ai, bi are inferred by perception algorithms. Due to uncertainty in
perception, the coefficients are not deterministically known: rather, we only know
the probability distribution over the coefficients. Let Dom(ai), Dom(bi) denote
the domain of the coefficients, and p(ai), p(bi) denote the respective probability
density functions. So, the constraints from perception are not tautological, but
instead hold with an associated probability, that is, Pr(aixt + bi ≤ 0) ≥ 1 − δ
or Pr(aixt + bi < 0) ≥ 1− δ.

We denote the control inputs of the autonomous system, which are the values
to be synthesized, by U ; the value at each time instant t is ut. A trace of system
states and control values is denoted by τ : IR≥0 → X ×U where τ(t) = (xt,ut).

3.1 Chance Constrained Temporal Logic

We now define chance constrained temporal logic as a probabilistic extension of
signal temporal logic, motivated by two key observations:
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– For specifications applied to autonomous systems, temporal aspects of cor-
rectness arise from mission requirements such as reaching specific positions in
sequence while staying away from particular regions. These temporal aspects
of mission requirements do not usually have any associated uncertainty.

– Perception gathers information about a particular instant of time, and un-
certainty in perception is hence reflected only in the predicates computed on
the system states at a given time, and not on the temporal operators.

We therefore introduce chance constraints at the atomic predicate level of our
logic. The syntax definition of C2TL is as follows:

φdet := φlin | φlin ∧ φlin | ¬φlin
φcc := [Pr(φdet) ≥ 1− δ] | ¬φcc | ∼φcc | φcc ∧ φcc | φcc ∨ φcc | φccU[a,b]φcc,

where:

– linear predicate φlin over the variables v ⊆ X ∪ U is of the form
φlin(v) : aiv + bi ≤ 0 or aiv + bi < 0

– deterministic predicate φdet is a Boolean combination of linear predicates.
– chance-constraint [12] is a probabilistic extension of deterministic predicates

and is of the form Pr(φdet) ≥ 1− δ. where 0 ≤ δ ≤ 1 represents uncertainty
about whether the inequality holds.

– The coefficients ai, bi of the chance constraints are random variables with
Gaussian probability distributions, rather than constants.

The set of coefficients that satisfy a deterministic predicate φdet over vari-
ables v is denoted by R(φdet, v). So, the probability of satisfying φdet when the
coefficients are probabilistic is given by pc(φdet, v) =

∫
c∈R(φdet,v)

p(c)dc where

c = (a, b). C2TL admits the standard globally (G), eventually (F ) and until (U)
operators of temporal logic; here we restrict discussion to the until (U) operator,
which can be used to represent all of the others. The subscripts of the operators
denote the time interval associated with the property, as in STL.

The satisfaction of a C2TL formula over a trace τ at time t is defined recur-
sively as follows:
τ(t) |= φlin ⇔ φlin(τ(t))

τ(t) |= ¬φ1lin ∧ φ2lin ⇔ φ1lin(τ(t)) ∧ φ2lin(τ(t))

τ(t) |= ¬φlin ⇔ ¬φlin(τ(t))

τ(t) |= [Pr(φdet) ≥ 1− δ] ⇔ pc(φdet, τ(t)) ≥ 1− δ
τ(t) |= ¬[Pr(φdet) ≥ 1− δ] ⇔ pc(φdet, τ(t)) < 1− δ
τ(t) |= ∼[Pr(φdet) ≥ 1− δ] ⇔ τ(t) |= [Pr(¬φdet) ≥ 1− δ]
τ(t) |= φ1cc ∧ φ2cc ⇔ τ(t) |= φ1cc ∧ τ(t) |= φ2cc

τ(t) |= φ1cc ∨ φ2cc ⇔ τ(t) |= φ1cc ∨ τ(t) |= φ2cc

τ(t) |= φ1ccU[a,b]φ
2
cc ⇔ ∃t1 t+ a ≤ t1 ≤ t+ b ∧ τ(t1) |= φ2cc

∧ (∀t2 t ≤ t2 ≤ t1 ⇒ τ(t2) |= φ1cc)
As a special case, when δ = 0, chance constraints become deterministic. Chance
constraints have two kinds of negations: logical negation denoted by ¬ and prob-
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abilistic negation denoted by ∼. Consider a deterministic formula φdet and its
logical negation ¬φdet, and corresponding chance constraints φcc ≡ Pr(φdet) ≥
1 − δ and the probabilistic negation ∼φcc ≡ Pr(¬φdet) ≥ 1 − δ. If δ = 0.8,
then φcc ≡ Pr(φdet) ≥ 0.2, that is, Pr(¬φdet) < 0.8. This is consistent with
∼φcc ≡ Pr(¬φdet) ≥ 0.2. Thus, it is possible for both φcc and its probabilistic
negation ∼φcc to simultaneously be true.

The following theorem relates probabilistic negation and logical negation
when δ < 0.5. This case is relevant because it corresponds to “likely” chance
constraints, where the probability of violation is less than 0.5. In practice, most
useful constraints obtained from perception have significantly high confidence
and δ is very small.

Theorem 1. If δ < 0.5, probabilistic negation is equivalent to logical negation,
that is, ¬φcc ≡ ∼φcc.

Proof. ¬φcc ≡ ¬[Pr(φdet) ≥ 1−δ] ≡ ¬[Pr(¬φdet) < δ]. Now, δ < 0.5 ≡ δ < 1−δ.
Thus, ¬φcc ≡ ¬[Pr(¬φdet) < δ < 1 − δ], that is, ¬φcc ≡ ¬[Pr(¬φdet) < 1 − δ]
when δ < 0.5. Further, ¬[Pr(¬φdet) < 1− δ] ≡ [Pr(¬φdet) ≥ 1− δ] ≡ ∼φcc.
Hence, ¬φcc ≡ ∼φcc if δ < 0.5. ut

3.2 C2TL Specification for Autonomous Vehicle Control

We now describe how the correctness properties of an autonomous system can
be specified using C2TL.
Obstacles: Any obstacle can be approximated by a union of a finite number of
convex polytopes. The planes forming the convex polytopes are only probabilis-
tically known, due to perception uncertainty. A convex polytope is a conjunction
of half-planes (linear constraints), and can be represented as

∧
i(aixt + bi > 0),

where the coefficients ai ∼ N (aµi ,a
Σ
i ) are assumed to be Gaussian variables

whose mean and variance are estimated by the perception pipeline. Since the
coefficients are Gaussian, collision with obstacles cannot be ruled out deter-
ministically. Let δobs be the user-specified threshold for the maximum allowable
probability of collision with obstacles. This collision avoidance property is spec-
ified in C2TL as: Pr(

∨
i aixt + bi ≤ 0) ≥ 1 − δobs. The property of avoiding

multiple obstacles j is specified as: Pr(
∧
j

∨
i

aijxt + bij ≤ 0) ≥ 1− δobs.

We assume that the map consists of static and dynamic obstacles as well as
real or virtual walls that restrict the vehicle to be within a bounded region, but
outside of obstacle areas. Let aij be the coefficients of the obstacles and wij be
the coefficients of the perceived walls. The unobstructed map with uncertainty
can thus be represented using a formula φmap :=

[Pr(
∧
j

∨
i

aijxt + bij ≤ 0) ≥ 1− δobs] ∧ [Pr(
∧
j

∨
i

wijxt + bij ≤ 0) ≥ 1− δwall]

where aij ∼ N (aµij ,a
Σ
ij) represents the uncertain perception of obstacles, and

wij ∼ N (wµ
ij ,w

Σ
ij) represents the uncertain perception of walls (which in prac-

tice includes uncertainty in self-localization). Similar constraints can be added
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for other parameters of an autonomous system such as constraints on speed or
acceleration based on the system’s current region in the map.
Mission: Apart from the safe navigation requirement represented by the global
property G(φmap), a second set of useful specifications on autonomous vehicles
corresponds to mission requirements. For example, the vehicle must reach its fi-
nal destination within some time-bound tmax. Because of uncertainty in percep-
tion, we can not guarantee this property deterministically. Given a user-specified
probability threshold δmission of failing to achieve the mission goals, the goal of
reaching the destination is specified as F[0,tmax](Pr(x = xdest) ≥ 1 − δmission).
Other examples include the requirement that an autonomous car wait at a stop
sign until all cross-traffic arriving at the intersection before it has passed, and
that an aircraft flies straight without turning till it reaches the safe velocity range
for turning. These properties can be specified using until properties, φ1U[0,t]φ2.
We denote the set of mission constraints by φmission.

The overall specification for the safe control of autonomous system is thus
φmap ∧ φmission: that is, the system achieves the temporal specification of mis-
sion goals while remaining safe with respect to the map. We note that the focus
of this paper is on autonomous vehicles, but C2TL can also be used to specify
behavior of other autonomous systems such as robotic manipulators, and the
techniques presented in this paper extend beyond this application domain.

3.3 C2TL to Conservative Linear Constraints

In this section, we present a translation of C2TL constraints over Gaussian ran-
dom variables to deterministic linear constraints. The constraints are linear with
respect to system (state) variables and conic overall due to uncertain coefficients.
The first part of the translation deals with temporal logic formulae and Boolean
combinations of elementary chance constraints. The second part of translation
focuses on elementary chance constraints, and reduces those to deterministic
constraints linear in the state variables.

We focus on chance constraints with violation probability threshold less than
0.5 1. Similar to the STL encoding provided in [16], we introduce Boolean, that

is, {0, 1} integer variables mφcc

t for each chance constraint φcc and time t. These
Boolean variables are related in the same way as for the STL encoding.

– Negation: m¬φcc

t = 1−mφcc

t

– Conjunction: m
φ1
cc∧φ

2
cc

t = min(m
φ1
cc
t ,m

φ2
cc
t )

– Disjunction: m
φ1
cc∨φ

2
cc

t = max(m
φ1
cc
t ,m

φ2
cc
t )

– Until: m
φ1
ccU[a,b]φ

2
cc

t = maxt′∈[t+a,t+b](min(m
φ2
cc

t′ ,mint′′∈[t,t′](m
φ1
cc

t′′ )))

1 As discussed in Section 3.1, probabilistic negation is not the same as logical negation
when violation probability (δ) can be 0.5 or more, and hence, we will need two
{0, 1} integer variables to represent the truth value of each chance constraint, to
account for four cases depending on the truth value of the chance constraint and its
probabilistic negation. For likely (violation probability δ < 0.5) chance constraints,
one {0, 1} integer variable is sufficient by Theorem 1.
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The next challenge is in translating the probabilistic chance constraints over
Gaussian variables to deterministic mixed integer constraints that are linear in
the state variables. We consider chance constraints of the form:

φelemcc ≡ Pr(
∧
j

Nj∨
i

aijxt + bij ≤ 0) ≥ 1− δtm.

In the rest of the section, we show how we can conservatively over-approximate
φelemcc using mixed integer constraints which are satisfiable only if φelemcc is satis-
fiable. We first note that φelemcc ≡ :

Pr(
∧
i,j

aijxt + bij −Mzij ≤ 0) ≥ 1− δtm ∧
∧
j

(∑
i

zij < Nj ∧ zij ∈ {0, 1}

)
,

where M is a sufficiently large positive number. This transformation uses the
big-M reduction common in non-convex optimization, see [8] for examples. The
above equivalence holds because at least one zij is 0 for each j since

∑
i zij < Nj

and zij ∈ {0, 1}, and thus, at least one of the constraints in
∨Nj

i aijxt + bij ≤ 0
must be true for each j.

Next, we use Boole’s inequality to decompose the conjunction in the proba-
bilistic chance constraint as follows.

Pr(
∧
i,j

aijxt + bij −Mzij ≤ 0) ≥ 1− δtm ⇔ Pr(
∨
i,j

aijxt + bij −Mzij > 0) < δtm.

Further, Pr(
∨
i,j

aijxt + bij −Mzij > 0) <
∑
i,j

Pr(aijxt + bij −Mzij > 0)

since the probability of union of events is less than the sum of the individual
probabilities of the occurrence of each event.

Next, we introduce new variables 0 ≤ εij ≤ 1 with
∑
i,j εij < δtm, and

conservatively approximate the chance constraint as:

Pr(
∧
j

Nj∨
i

aijxt + bij ≤ 0) ≥ 1− δtm ⇐
∧
i,j

Pr(aijxt + bij −Mzj ≤ 0) ≥ 1− εij

∧
∧
ij

0 ≤ εij ≤ 1 ∧
∑
ij

εij < δtm ∧
∑
j

zj < Nj ∧
∧
j

zj ∈ {0, 1}

With N =
∑
j Nj , we choose εij = δtm/N , which corresponds to uniform

risk allocation among the probabilistic constraints above. However, more effi-
cient risk allocation techniques [38] can also be used. Since aij is a Gaussian
random variable, the linear combination of Gaussian variables aijxt + bij −Mzj
is also Gaussian. Further, the uniform risk allocation ensures that the violation
probability bounds are constant. So, Pr(aijxt + bij −Mzj ≤ 0) ≥ 1 − εij can
be translated to a deterministic constraint aijxt + bij − Mzj ≤ ErfInv(εij)
where ErfInv is the Gaussian inverse error function computed using the table
for Gaussian distributions, as discussed in [36]. Consequently, the probabilistic
chance constraints are reduced to a set of deterministic constraints. This com-
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pletes the translation of C2TL constraints to a set of deterministic mixed integer
linear constraints over the system variables.

The following theorem summarizes the conservative nature of the above
translation. Given the control specification for an autonomous vehicle ψC2TL, the
above translation generates ψMILP which conservatively approximates ψC2TL.

Theorem 2. Given C2TL constraints ψC2TL, the translation presented above
will generate a set of mixed integer constraints ψMILP such that ψC2TL ⇒
ψMILP .

There are two sources of conservativeness of ψMILP :
– We use the sum of the probabilities of chance constraints to upper-bound

the probability of their disjunction. If the constraints are completely inde-
pendent of each other, the sum of their individual probabilities is exactly the
probability of their disjunction. The approximation is small if the constraints
are mostly independent, which is often the case for specifying autonomous
vehicle systems, since obstacles usually do not overlap.

– We use a uniform risk allocation of the violation probability bounds for each
individual constraint. This can be further improved using more effective risk
allocation techniques [38].
Thus, the translation of C2TL constraints to mixed integer constraints is con-

servative, but the approximation introduced is expected to be tight for C2TL
specifications used for automated vehicle control.

3.4 Optimal Autonomous Vehicle Control

The goal of synthesizing optimal control for autonomous vehicles is to automat-
ically generate the control inputs u. The control inputs applied at time k are
denoted by uk. Often, the dynamical system can be approximated by linearizing
the system around the current point of operation and using model predictive or
receding horizon control. A detailed discussion on model predictive control for
signal temporal logic can be found in [16]. We employ a similar approach here.

A finite parametrization of a linear system assuming piecewise constant con-
trol inputs yields the following difference equation:

xk+1 = Akxk +Bkuk,
where xk ∈ Rnx is the system state in nx dimensions, uk ∈ Rnu denotes the nu
control inputs, and Ak, Bk are coefficients representing linear system dynamics
around the state xk. We consider the control problem over a bounded time
horizon T , that is, 0 ≤ k ≤ T .

Further, the control inputs uk at all time steps k are required to be in a
convex feasible region Fu, that is,

Fu ≡
Ng∧
i=1

(gTi u ≤ ci);
∧
k

uk ∈ Fu

where the convex region Fu is represented as intersection of Ng half-planes.
The state variables are required to satisfy the autonomous vehicle correct-

ness specification ψC2TL
ap , that is, xk |= ψC2TL

ap for all k. We can conservatively
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approximate the autonomous vehicle correctness specification by ψMILP
ap as dis-

cussed earlier, that is, xk |= ψMILP
ap ⇒ xk |= ψC2TL

ap

In addition to correctness specification, the synthesized vehicle control is
also expected to minimize a user-specified cost function J(x,u). We restrict
the cost function J to be quadratic in order to ensure that solving the control
synthesis problem is computationally efficient. Quadratic functions can capture
cost metrics of the form

∑
i u
†
kU
†Uuk+x†kS

†Sxk with appropriate scaling vectors
U and S, where † denotes the transpose of a matrix. These can represent metrics
such as fuel consumption as well as metrics on the vehicle path.

Problem 1 (Autonomous Vehicle Control).
arg min

u
J(x,u)

s.t. xk+1 = Akxk + Bkuk, k = 1 . . . T,uk ∈ Fu,xk |= ψC2TL
ap

Problem 2 (Conservative Autonomous Control).
arg min

u
J(x,u)

s.t. xk+1 = Akxk + Bkuk, k = 1 . . . T,uk ∈ Fu,xk |= ψMILP
ap

Recall that every solution to Problem 2 also solves Problem 1. Moreover, for
a bounded time horizon T and a quadratic cost function, since all the con-
straints are linear in system variables and conic due to the presence of uncertain
coefficients, the conservative autonomous control problem can be solved using
scalable second order (quadratic) cone programming tools such as CVXOPT [3].
The following theorem summarizes the correctness guarantee:

Theorem 3. The solution to Problem 2 is sound with respect to Problem 1: if
control inputs are synthesized for the conservative problem, they are guaranteed
to satisfy the specified correctness property ψC2TL

ap .

This theorem follows from Theorem 2 because xk |= ψC2TL
ap ⇐ xk |= ψMILP

ap .
Note, however, that the proposed synthesis method (i.e. solving the more effi-
ciently solvable conservative problem using second order cone programming) is
incomplete for the autonomous control problem due to the conservative approx-
imation of C2TL constraints (ψC2TL

ap ⇐ ψMILP
ap ).

The incompleteness relates to degree of conservative approximation intro-
duced in the translation of C2TL constraints to MILP constraints.

4 Case Studies

We now experimentally demonstrate the effectiveness of our approach. All exper-
iments were done on a Intel Core-i7 2.9 GHz x 8 machine with 16 GB memory.
Where applicable, we use a baseline comprised of a modified LQG-based motion
planning algorithm [35] and a Monte Carlo sampling-based search algorithm
to find an optimal trajectory over the uncertain world model. Our technique
is more general than sampling-based approaches because we can enforce tem-
poral logic specifications beyond reachability goals common in classical motion
planning. Additionally, the uncertainty in our problem lies within the perceived
world model rather than the system evolution.
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Fig. 1: Navigation in an uncertain
map

Navigation in an uncertain map: The
first case-study considers the problem of
navigation in an uncertain map from [39].
Parameter values and other details of the
map can be found in [39]. A point mass
with two modes – moving forward and
turning – is expected to navigate safely
in the map shown in Figure 1. The walls
in the map and the obstacle in the cen-
ter are modeled using probabilistic con-
straints that incorporate the uncertainty
in perception. The uncertain walls are il-
lustrated in the map by sampling values
of the coefficients and drawing the cor-
responding walls. The probabilistic safety
requirement in this case is a global property requiring that the vehicle avoid the
walls and obstacles with a very high probability. The objective function being
optimized is quadratic in the final state as well as the control inputs:

f(x,u) = 50(xN − xdest)
T (xN − xdest) + 0.001

∑
i

uTi ui,

where xdest is the destination state (2, 1). Observe that although the cost func-
tion drives the optimization to minimize the path length, the generated path
goes around the obstacle, taking the longer path. This is because the shorter
path would violate the C2TL safety constraints due to the uncertainty in the
location of the obstacles and walls. This is illustrated in Figure 1.

When compared to the approach in [39], the method proposed in this paper
takes 4.1 seconds instead of 25.2 seconds to compute a sequence of control in-
puts. Monte Carlo simulation was used to estimate the probability of constraint
violation. For each simulation, the location of the walls and the obstacles was de-
terminized by sampling from the corresponding Gaussian distribution. We then
checked whether the automatically generated path intersected with the walls
or obstacles, violating the safety requirement. When the violation probability
in the C2TL specification was set to 0.001, Monte Carlo trials did not find a
single instance out of 10000 simulations in which the property was violated. We
increased the violation probability to 0.01, and found 8 out of 10000 simulations
that violated the probability; i.e., the estimated violation probability was 0.0008.
This demonstrates how the proposed approach conservatively approximates the
specified probabilistic constraint, generating a motion plan that satisfies the
probabilistic safety property.

Lane Change: The second case-study is on the synthesis of control for an
autonomous vehicle such as a car, trying to pass a tractor-trailer in an adjacent
lane, as described in [40]. The trailer can probabilistically switch into the passing
car’s lane. If the car is ahead of the trailer when the trailer initiates a lane change,
then the car should accelerate, and if the car is behind the trailer when the trailer
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initiates the lane change, the car should decelerate. If the trailer switches lanes
when it is just adjacent to the car, the car has no action to prevent an accident.
Thus, a completely safe course of action is not possible for the autonomous
car and it can only try to keep the risk below a user-specified threshold by
passing the trailer quickly and not staying in the unsafe region for long. The
uncertainty arises due to a probabilistic model of when the trailer will switch
lanes, based on the car’s observations of its behavior. This case-study assumes
a static jump Markov model of this uncertainty, as shown in Figure 3 of [40].
The safety specification requires that the passing car is either decelerating and
behind the trailer until the trailer make the lane switch, or the trailer remains in
its lane until the passing the car is accelerating and ahead of the trailer. We also
require the separation between the car and trailer to be above a safe limit with
a high probability. The threshold of violing the specification was set to 0.015.
The cost function was the time spent behind the trailer but not in the same
lane. Autopilot generation took 5.8 seconds, and Monte Carlo simulations of the
generated autopilot showed that the actual threshold of violation is 0.0004.

Fig. 2: (a) Runtime Comparison (b) Accuracy Comparison

In order to compare with LQG-based sampling techniques, we change the
cost function to incorporate temporal logic requirements by penalizing the car
for coming close to trailer, and rewarding it for either passing the trailer or trav-
eling behind it in the same lane if the trailer changed lanes. In Figure 2(a), we
compare runtime of the synthesis technique for each specified violation probabil-
ity. While our proposed technique’s runtime is not very sensitive to the violation
probability, the runtime of the sampling-based approach increases sharply due
to the increase in the number of required simulation runs. In Figure 2(b), we
present the violation probability observed in Monte Carlo simulations when both
approaches are given the same runtime, by restricting the number of simulation
runs. All bars above the diagonal line satisfy the probabilistic constraint, while
bars below it do not (note the negative log scale on y-axis as well as x-axis).
No violations were found for our proposed technique for error bounds 10−6 and
lower. Thus, the proposed method always satisfies the specification, whereas
sampling fails to do so for smaller error bounds.

Passing a Vehicle Using Oncoming Traffic Lane: The third case-study is
from recent work by Xu et al [41]. In this case-study, a vehicle’s lane is blocked
and it needs to move into the lane of oncoming traffic to go around the obstacle.
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The perception pipeline on the vehicle estimates the position and the speed of
oncoming traffic before deciding to get into the oncoming traffic lane. The dy-
namics and parameters are described in [41], and we discuss only the results
here. Due to uncertainty in perception, we can not deterministically guarantee
safe maneuvering of the vehicle, but we require that the probability of collision
with oncoming traffic or with the obstacle in the vehicle’s lane is below a thresh-
old of ε. The uncertainty in perception of the speed of the oncoming traffic is
represented by the standard deviation sd of the random variable representing the
speed. We modify the cost function from the original case-study, because we use
C2TL constraints to specify the safety conditions. The cost function measures
the time taken to re-enter the lane after crossing the obstacle.
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(a) Illustration of Synthesized Control (b) Runtime vs − log(ε)

Fig. 3: Left: Positions of the autonomous vehicle (circle) and oncoming traffic
(rectangle) at different (1-6) time steps are shown. The red rectangle is the
obstacle. Right: Runtime comparison for different violation probability bounds.

We illustrate the qualitative nature of the synthesized control in Figure 3(a).
For violation probability ε = 0.0001, the control synthesized by the sampling-
based technique in time comparable to our approach (4 seconds) is not prob-
abilistically safe. The control synthesized using the proposed technique relies
on speeding up and getting around the obstacle before the oncoming traffic.
When we increase the standard deviation in the perception of the speed of the
oncoming traffic by 10X, the control synthesized by our approach picks a less
optimum, higher-cost solution in order to meet the safety violation probability
requirement, which slows the vehicle and waits for the oncoming traffic to pass
before going around the obstacle. Figure 3(b) shows that the runtime of the
sampling-based approach increases rapidly with a decrease in ε, while it does
not change significantly for our technique.

5 Conclusion
In this paper, we present a formal approach to synthesizing autonomous vehi-
cle control in presence of perception uncertainty. Chance constrained temporal
logic (C2TL) is proposed to capture correctness specifications in the presence
of uncertainty. The autonomous vehicle control synthesized by our technique is
guaranteed to satisfy the probabilistic specifications, as demonstrated in several
case studies.
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