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Abstract. In this paper, we present an automated techniqueswati: Synthesizing
Wordlengths Automatically Using Testing and Induction, which uses a combi-
nation of Nelder-Mead optimization based testing, and induction from examples
to automatically synthesize optimal fixedpoint implementation of numerical rou-
tines. The design of numerical software is commonly done using floating-point
arithmetic in design-environments such as Matlab. However, these designs are
often implemented using fixed-point arithmetic for speed and efficiency reasons
especially in embedded systems. The fixed-point implementation reduces imple-
mentation cost, provides better performance, and reduces power consumption.
The conversion from floating-point designs to fixed-point code is subject to two
opposing constraints: (i) the word-width of fixed-point types must be minimized,
and (ii) the outputs of the fixed-point program must be accurate. In this paper,
we propose a new solution to this problem. Our technique takes the floating-point
program, specified accuracy and an implementation cost model and provides the
fixed-point program with specified accuracy and optimal implementation cost.
We demonstrate the effectiveness of our approach on a set of examples from the
domain of automated control, robotics and digital signal processing.

1 Introduction

Numerical software forms a critical component of systems indomains such as robotics,
automated control and digital signal processing. These numerical routines have two
important characteristics. First, these routines are procedures that compute some math-
ematical functions designed ignoring precision issues of fixed-point arithmetic. Design
environments such as Simulink/Stateflow and LabVIEW allow design and simulation
of numerical routines using floating-point arithmetic thatclosely resembles the more
intuitive real arithmetic. Second, the implementation of these numerical routines run in
resource-constrained environments, requiring their optimization for low resource cost
and high performance. It is common for embedded platforms tohave processors with-
out floating-point units due to their added cost and performance penalty. The signal
processing/control engineer must thus redesign her floating-point program to instead
usefixed-point arithmetic. Each floating-point variable and operation in the original
program is simply replaced by a corresponding fixed-point variable and operation, so
the basic structure of the program does not change. The tricky part of the redesign pro-
cess is to find theoptimal fixed-point types, viz., the optimal wordlengths (bit-widths) of
fixed-point variables, so that the implementation on the platform is optimal — lowest
cost and highest performance —and the resulting fixed-point program is sufficiently



accurate. The following novel contributions are made in this paper to address this
problem:

– We present a new approach for inductive synthesis of fixed-point programs from
floating-point versions. The novelty stems in part from our use of optimization:
we not only use optimization routines to minimize fixed-point types (bit-widths of
fixed-point variables), as previous approaches have, but also show how to use an
optimization oracle to systematically test the program andgenerate input-output
examples for inductive synthesis.

– We illustrate the practical effectiveness of our techniqueon programs drawn from
the domains of digital signal processing and control theory. For the control theory
examples, we not only exhibit the synthesized fixed-point programs, but also show
that these programs, when integrated in a feedback loop withthe rest of the system,
perform as accurately as the original floating-point versions.

2 Preliminaries

Floating-point arithmetic [8] is a system for approximately representing real numbers
that supports a wide range of values. It approximates a real number using a fixed num-
ber of significant digits scaled using an exponent. The floating-point system is so called
because the radix point canfloat anywhere relative to the significant digits of the num-
ber. This is in contrast to fixed-point arithmetic [23] in which there are a fixed number
of digits and the radix point is also fixed. Due to this feature, a floating-point repre-
sentation can represent a much wider range of values with thesame number of digits.
The most common floating-point representation used in computers is that defined by
the IEEE 754 Standard [1]. In spite of the benefits of floating-point arithmetic, em-
bedded systems often use fixed-point arithmetic to reduce resource cost and improve
performance. A fixed-point number consists of a sign mode bit, an integer part and a
fractional part. We denote the fixed-point type of a variablex by fxτ (x). Formally, a
fixed-point type is a triple:

〈Signedness, IWL, FWL〉.

The sign mode bitSignedness is 0 if the data is unsigned and is1 if the data is signed.
The length of the integer part is called the integer wordlength (IWL) and the length of
the fractional part is called the fractional wordlength (FWL). The fixed-point wordlength
(WL) is the sum of the integer wordlength and fractional wordlength; that is,WL = IWL+
FWL. The operations supported by fixed-point arithmetic are thesame as those in the
floating-point arithmetic standard [1] but the semantics can differ on custom hardware.
For example, the rounding mode for arithmetic operations could be different, and the
result could be specified to saturate or overflow/underflow incase the wordlength of a
variable is not sufficient to store a computed result. One complete semantics of fixed-
point operation is provided with the Fixed-point Toolbox inMatlab [2]. The range of the
fixed-point number is much smaller compared to the range of floating-point numbers
for the same number of bits since the radix point is fixed and nodynamic adjustment of
precision is possible. Translating a floating-point program into fixed-point program is
non-trivial and requires careful consideration of loss of precision and range. The integer
wordlengths and fractional wordlengths of the fixed-point variables need to be carefully
selected to ensure that the computation remains accurate toa specified threshold. Please



refer to the extended version of the paper available as technical report [12] for more
background discussion.

3 Problem Definition

We introduce a simple illustrative example to explain the problem of synthesizing an
optimal fixed-point program from a floating-point program, and then present the formal
problem definition.

Floating-point Implementation: Given a floating-point program, we need to
synthesize fixed-point type for each floating-point variable.

Example 1: The floating-point program in this example 1 takesradius as
the input, and computes the correspondingarea of the circle. Notice that the
fixed-point program is essentially identical to the floating-point version, ex-
cept that the fixed-point types of variablesmypi, radius, t and area must
be identified. Recall that the fixed-point type is a triple〈sj, iwlj, fwlj〉
for j-th variable wheresj denotes theSignedness of the variable, iwlj
denotes the integer wordlength andfwlj denotes the fraction wordlength.

Procedure 1 Floating-point program to
compute circle area
Input: radius

Output: area

doublemypi, radius, t, area
mypi = 3.14159265358979323846

t = radius× radius

area = mypi× t

return area

Procedure 2 Fixed-point program to
compute circle area
Input: radius, 〈sj, iwlj, fwlj〉 for

j = 1, 2, 3, 4

Output: area

fx〈s1, iwl1, fwl1〉 mypi
fx〈s2, iwl2, fwl2〉 radius
fx〈s3, iwl3, fwl3〉 t
fx〈s4, iwl4, fwl4〉 area
mypi = 3.14159265358979323846

t = radius× radius

area = mypi× t

return area

We useFfl(X) to denote the floating-point program with inputsX = 〈x1, x2, . . . , xn〉.
Ffx(X, fxτ ) denotes the fixed-point version of the program, where the fixed-point
type of a variablex ∈ X is fxτ (x). Note that the fixed-point types inFfx(X, fxτ ) are
defined by the mappingfxτ .

Input Domain: The context in which a fixed-point programFfx(X, fxτ ) is executed
often provides a precondition that must be satisfied by validinputs〈x1, x2, . . . , xn〉.
This defines the input domain denoted byDom(X).

Example 2: In our example of computing the area of a circle, suppose thatwe
are only interested in the radii in the range[0.1, 2.0). Then, the input domain
Dom(radius) is

radius ≥ 0.1 ∧ radius < 2.0



Correctness Condition for Accuracy: The correctness condition specifies an error
functionErr(Ffl(X), Ffx(X, fxτ )), and a maximum error thresholdmaxError. The
error function and error threshold together define a bound onthe “distance” between
outputs generated by the floating-point and fixed-point programs respectively. Anac-
curatefixed-point program is one whose error function lies within the error threshold
for all inputs in the input domain. Some common error functions are:

• Absolute difference between the floating-point function and fixed-point function:
|Ffl(X)− Ffx(X, fxτ )|

• Relative difference between the floating-point function and fixed-point function:
∣
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∣

Ffl(X)−Ffx(X,fxτ)
Ffl(X)
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difference forFfl(X) >> δ and approaches a weighted absolute difference for
Ffl(X) << δ. WhenFfl(X) can be zero for some values ofX , the moderated
relative difference remains bounded unlike the relative difference which becomes
unbounded.

Thecorrectness condition for accuracyrequires that for all inputs in the provided
input domainDom(X), the error functionErr(Ffl(X), Ffx(X, fxτ )) is below the
specified thresholdmaxError; i.e.,

∀X ∈ Dom(X) . Err(Ffl(X), Ffx(X, fxτ )) ≤ maxError

Example 3: In our running example of computing the area of a circle, the error function
is chosen to be relative difference, the error threshold0.01, and thus the correctness
condition is∀radius, s.t. radius ≥ 0.1 ∧ radius < 2.0

|
Ffl(radius)− Ffx(radius, fxτ )

Ffl(radius)
| ≤ 0.01

Implementation Cost Model: Thecost modelof the fixed-point program is a func-
tion mapping fixed-point types to a real number. For a given fixed-point program
Ffx(X, fxτ ), letX = {t1, t2, . . . , tk} be the set of fixed-point program variables with
corresponding types{fxτ (t1), fxτ (t2), . . . , fxτ (tk)}. Then the cost model (or simply
cost) of Ffx is a function

cost : (fxτ (t1), fxτ (t2), . . . , fxτ (tk)) → R

In practice,cost is often just a function of the total wordlengths (WL = IWL+ FWL) of
the variables. It can incorporate hardware implementationmetrics such as area, power
and delay. A number of cost models are available in the literature [15, 16, 5, 6], and all
of these can be used in our approach.
Example 4:The cost model proposed by Constantinides et al [6] for the running exam-
ple yields the following cost function. We use this cost model in all our examples.

cost(fxτ(mypi), fxτ(radius), fxτ(t), fxτ(area)) =

cdelay(WL(mypi)) + cmul(WL(radius), WL(radius), WL(t))

+cmul(WL(mypi), WL(t), WL(area)) , where

cdelay(l) = l + 1 and cmul(l1, l2, l) = 0.6× (l1 + 1) ∗ l2 − 0.85 ∗ (l1 + l2 − l)



The area of a multiplier grows almost linearly with both the coefficients and the
data wordlength. The first term in the Constantinides model represents this cost. The
second term represents the area cost of computational elements required only for carry
propagation. The coefficients0.6 and0.85 were obtained through least-squared fitting
to area of several hundred multipliers of different coefficient value and width [6].

Problem Definition

Definition 1 (Optimal Fixed-point Types Synthesis). The optimal fixed-
point types synthesis problem is as follows. Given a floating-point program
Ffx(X, fxτ (T )) with variables T , an input domain Dom(X), a correct-
ness conditionErr(Ffl(X), Ffx(X, fxτ (T ))) ≤ maxError, and a cost model
cost(fxτ (t1), fxτ (t2), . . . , fxτ (tk)), the optimal fixed-point types synthesis problem
is to discover fixed-point types

fxτ∗(T ) = {fxτ∗(t1), fxτ
∗(t2), . . . , fxτ

∗(tk)}

such that the fixed-point programFfl(X) with the above types for fixed-point variables
satisfies the correctness condition for accuracy, that is,

(a) ∀X ∈ Dom(X) . Err(Ffl(X), Ffx(X, fxτ
∗(T ))) ≤ maxError

and has minimal cost with respect to the given cost function among all fixed-point types
that satisfy condition (a), that is,

(b) fxτ ∗ = argmin
fxτ satisfies (a)

cost(fxτ (T ))

Our goal is to automate this search for optimal fixed-point types. We illustrate this
problem using the running example below.

Example 5: In our running example of computing thearea of a circle, we need
to discoverfxτ∗(mypi), fxτ∗(radius), fxτ ∗(t) andfxτ ∗(area) such that

(a) the fixed-point program with the given fixed-point types satisfies the correctness
condition; that is,∀radius, s.t., radius ≥ 0.1 ∧ radius < 2.0

|
Ffl(radius)− Ffx(radius, fxτ

∗)

Ffl(radius)
| ≤ 0.01

(b) and the cost is minimized; that is,

fxτ∗ = argmin
fxτ satisfies (a)

cost(fxτ (mypi, radius, t, area))

We use this example to illustrate the trade-off between costand error and how a human
might use trial and error to discover the correct wordlengths. We vary the wordlength
of the variables. The integer wordlength is selected to avoid overflow and the remaining
bits are used for fractional wordlength.
Case 1 (Figure 1): WL = 12 for all variables. fxτ (mypi) =
〈0, 2, 10〉, fxτ(radius) = 〈0, 1, 11〉, fxτ(t) = 〈0, 2, 10〉, fxτ(area) = 〈0, 4, 8〉. Cost
is 179.80.
Case 2 (Figure 2): WL = 16 for all variables. fxτ (mypi) =



〈0, 2, 14〉, fxτ(radius) = 〈0, 1, 15〉, fxτ(t) = 〈0, 2, 14〉, fxτ(area) = 〈0, 4, 12〉.
Cost is316.20.
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Fig. 1: WL = 12. Error threshold at0.01 is vio-
lated.
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Fig. 2: WL = 16. Error threshold at0.01 is not
violated.

As we will show in the next section, our approach computes fixed-point types that
meet the accuracy threshold and yield a cost of only104.65, which, while being less
than the cost in Case 1, satisfies the correctness criterion like Case 2. In the following
section, we discuss our automated approach to solve this problem.

4 Our Approach

A central idea behind our approach,swati is to identify a small set ofinterestinginputs
S(X) using testing from the input domainDom(X) such that the optimal implementa-
tion found using induction that satisfies the correctness condition for the inputs inS(X)
will be optimal and correct for all inputs in the given input domainDom(X).

Procedure 3Overall Synthesis Algorithm:swati
Input: Floating-point programFfp, Fixed-point programFfx with fixed-point variablesT , Do-

main of inputsDom, Error functionErr, maximum error thresholdmaxError, Cost Model
cost, maximum wordlengthsWLmax

Output: Fixed-point typefxτ for variablesT or INFEASIBLE

S0 = random sample fromDom, Bad0 = S0, i = 0
while Badi 6= ∅ do

i = i+ 1, Si = Si−1 ∪Badi−1, fxτ i = optInduce(Ffp, Ffx, Dom,Err,maxError,

cost, WLmax, S
i)

if fxτ i = ⊥ then
return INFEASIBLE

end if
Badi = testErr(Ffp, Ffx, fxτ

i, Dom,Err,maxError)
end while
return fxτ∗ = fxτ i

The top-level synthesis algorithm is presented in Procedure 3.WLmax is an upper
bound on wordlengths beyond which it is non-optimal to use the fixed-point version.



The algorithm starts with a randomly selected set of examplesS0 from the given input
domain. Then, a fixed-point implementation that satisfies the accuracy condition for
each of these inputs and is of minimal cost is synthesized using the routineoptInduce.
If no such implementation is found, the algorithm reportsINFEASIBLE. Otherwise, the
testing routinetestErr checks whether the implementation fails the correctness con-
dition for any input. If so, a set of inputsBadi on which the implementation violates
the correctness condition are added to the setSi used for synthesis, and the process
is repeated. If the correctness condition is satisfied, the resulting fixed-point types are
output. In the rest of this section, we describe the main components of our approach in
detail, including the theoretical result.

4.1 Synthesizing Optimal Types for a Finite Input Set

TheoptInduce function (see Procedure 4) is used to obtain optimum fixed-point types
such that the fixed-point program with these types satisfies the correctness condition
for a finite input setS and has minimal cost. First, the floating-point programFfl is
executed for all the inputs in the sampleS and the range of each variableti as well as its
Signedness is recorded by the functionsgetRange andisSigned respectively. Then,
the integer wordlengthIWL sufficient to represent the computed range is assigned to
each variableti and theSignedness is 1 if the variable takes both positive and negative
values, and0 otherwise. If the fixed-point program with maximum wordlengthsWLmax

fails the correctness condition, we conclude that the synthesis is not feasible and return
⊥. If not, we search for the wordlength with minimum cost satisfying the correctness
condition using our optimization oracleOS . The result is used to compute the fractional
wordlengths, and the resulting fixed-point types are returned.

More precisely, OS solves the following optimization problem overfxτ :
Minimize cost(fxτ ) s.t.

∧

x∈S

Err(Ffx(x, fxτ ), Ffl(x)) ≤ maxError (1)

Let us reflect on the nature of the above optimization problem. The overall synthesis
algorithm might make several calls toOS for solving the optimization problem for
different sets of inputs and hence,OS must be a fast procedure. But it is a discrete
optimization problem with a non-convex constraint space, aproblem class that is known
to be computationally hard [7]. This rules out any computationally efficient algorithm
to implementOS without sacrificing correctness guarantees. Since the space of possible
types grows exponentially with the number of variables, brute-force search techniques
will not scale beyond a few variables. Satisfiability solvers can also not be directly
exploited to search for optimal wordlengths since the existential quantification is over
the types and not the variables. The arithmetic operators have different semantics when
operating on operands with different types and hence, the only way to encode this search
problem as a satisfiability problem is to case-splitexhaustivelyon all possible types
(word-lengths), where each case encodes the fixed-point program with one possible
type. The number of such cases is exponential in the number ofthe variables in the
program under synthesis and hence, SAT problems will be themselves exponentially
large in size. Further, one would need to invoke SAT solvers multiple times in order
to optimize the cost function. Thus, satisfiability solvingwould be a wrong choice to
address this problem. Further, the space of possible types is also not totally ordered



and hence, binary search like techniques would also not work. For a binary search like
technique to work, we will need to define a domination ordering over the types which
has three properties. Firstly, it is a total ordering relation. Secondly, if a particular type
assignment satisfies the correctness condition for all inputs then all dominating types
satisfy the correctness condition for all inputs. Thirdly,the cost function is monotonic
with respect to the domination ordering relation. In general, this may not be feasible for
any given floating-point program and cost function. Hence, we implementOS using a
greedy proceduregetMinCostWL presented in Procedure 5.

Procedure 4Optimal Fixed-Point Types Synthesis:optInduce

Input: Floating-point programFfp, Fixed-point programFfx with fixed-point variablesT , Do-
main of inputsDom, Error functionErr, maximum error thresholdmaxError, Cost Model
cost, max wordlengthsWLmax, InputS

Output: Optimal wordlengthsWL for inputsS or ⊥
for all fixed-point variableti in Ffx do

IWL(ti) = ⌈log(getRange(ti, Ffl, S) + 1)⌉, Signedness(ti) = isSigned(ti, Ffl, S)
end for
if WLmax < IWL then

return ⊥
end if
fxτ = 〈Signedness, IWL, WLmax − IWL〉
if Err(Ffp(x), Ffx(x, fxτ)) > maxError then

return ⊥
end if
WL = getMinCostWL(Ffp, Ffx, Dom,Err,maxError, fxcost, WLmax, S

i, IWL, Signedness)
return fxτ = 〈Signedness, IWL, WL− IWL〉

4.2 Verifying a Candidate Fixed-Point Program

In order to verify that the fixed-point programFfx(X, fxτ ) satisfies the correctness
condition, we need to check if the following logical formulais satisfiable.

∃X ∈ Dom(X) Err(Ffx(X, fxτ), Ffp(X)) > maxError (2)

If the formula is unsatisfiable, there is no input on which thefixed-point program vio-
lates the correctness condition.

For arbitrary (possibly non-linear) floating-point and fixed-point arithmetic opera-
tions, it is extremely difficult to solve such a problem in practice with current constraint
solvers. Instead, we use a novel optimization-based approach to verify the candidate
fixed-point program. The intuition behind using an optimization-based approach is that
the error function is continuous in the inputs or with very few discontinuities [17, 4],
and hence, optimization routines can easily find inputs which maximize error function
by starting from some random input and gradually adjusting the output to increase the
value of the error function. The optimization oracleOV is used to maximize the error
functionErr(Ffx(X, fxτ ), Ffp(X)) over the domainDom(X). If there is no input
X ∈ Dom(X) for which the error function exceedsmaxError, the fixed-point pro-
gram is correct and we terminate. Otherwise, we obtain an example input on which



Procedure 5getMinCostWL
Input: Floating-point programFfp, Fixed-point programFfx with fixed-point variablesT , Do-

main of inputsDom, Error functionErr, maximum error thresholdmaxErr, Cost Model
cost, max wordlengthsWLmax, InputS

Output: Optimal wordlengthsWL
valcandWL = {WLmax}
while valcandWL is not emptydo

WL = argmin
vcWL∈valcandWL

cost(vcWL), fxτ = 〈Signedness, IWL, WL − IWL〉, candWL = ∅,

valcandWL = ∅
for all fixed-point variableti in Ffx do

WL
i−(j) = WL(j) ∀j 6= i, WLi−(i) = WL(i) − 1, WLi+(j) = WL(j) ∀j 6= i, WLi+(i) =

WL(i) + 1, candWL = candWL ∪ {WLi−, WLi+}
end for
for all cand in candWL do

candfxτ = 〈Signedness, IWL, candWL− IWL〉
if Err(Ffp(x), Ffx(x, cand)) ≤ maxErr ∀x ∈ S

and cost(candfxτ) < cost(fxτ) then
valcandWL = valcandWL ∪ {cand}

end if
end for

end while
return fxτ

the fixed-point program violates the correctness condition. Multiple inputs can also be
generated where they exist.

In practice, with the current state-of-the-art optimization routines, it is difficult to
implementOV to find a global optimum. Instead, we use a numerical optimization
routine based on the Nelder-Mead method [19] which can handle arbitrary non-linear
functions and generates local optima. Procedure 6 definestestErr which invokes the
Nelder-Mead routine (indicated by “argmaxlocal”). This routine requires one to supply
a starting value ofX , which we generate randomly. To find multiple inputs, we invoke
the routine from different random initial points and recordall example inputs on which
the fixed-point program violates the correctness condition. Since a global optimum is
not guaranteed, we repeat this searchmaxAttempts times before declaring that the
fixed-point program is correct.

The following theorem summarizes the correctness and optimality guarantees of our
approach. Proof is presented in extended version [12].

Theorem 1. The synthesis procedure presented in Procedure 3 is guaranteed to syn-
thesize the fixed-point program which is of minimal cost and satisfies the correctness
condition for accuracy if optimization oraclesOS andOV find globally-optimal solu-
tions (when they exist).

5 Experiments

Apart from the running example, we present case studies fromDSP and control
systems to illustrate the utility of the presented synthesis approach. Our technique
was implemented in Matlab, and Nelder-Mead implementationavailable in Matlab as



Procedure 6Verification RoutinetestErr
Input: Floating-point programFfp, Fixed-point programFfx, Fixed-point typefxτ , Domain of

inputsDom, Error functionErr, maximum error thresholdmaxError
Output: InputsBad on whichFfx violates correctness condition

Bad = ∅
while i ≤ maxAttempts do

i = i + 1, X0 = random sample from Dom, Xcand =
argmaxlocal

X

(Err(Ffp(X), Ffx(X, fxτ)), X0)

if Err(Ffp(Xcand), Ffx(Xcand, fxτ)) > maxError andX ∈ Dom then
Bad = Bad ∪ {X}

end if
end while

fminsearch function was used for numerical optimization. We use the Constantinides
et al [6] cost model.

5.1 Running Example

We illustrate the synthesis approach (more details in [12])presented in Section 4 using
the running example. Our algorithm used34 examples and needed4 iterations. To eval-
uate our approach, we exhaustively simulated the generatedfixed-point program on the
given domain (0.1 ≤ radius < 2) at intervals of0.0001. The result is presented in
Figure 5.1.
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Fig. 3: Our Approach on Running Example
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Fig. 4: Running Example Using Random Inputs.

As a point of comparison, we also show the result of synthesizing a fixed-point pro-
gram using theoptInduce routine with100 inputs (3 times as many as our approach)
selected uniformly at random (Figure 5.1). The horizontal line in the plots denotes the
maximum error threshold of0.01 on the relative difference error function. The cost of
the fixed-point program synthesized with random sampling is89.65, and the fixed-point
types of the variables arefxτ (mypi) = 〈0, 2, 3〉, fxτ (radius) = 〈0, 1, 8〉, fxτ (t) =
〈0, 2, 10〉 and fxτ (area) = 〈0, 4, 8〉. Notice, however, that it is incorrect for a large
number of inputs. In contrast, the cost of the implementation produced using our tech-
nique is104.65, and the fixed-point types of the variables arefxτ (mypi) = 〈0, 2, 3〉,
fxτ (radius) = 〈0, 1, 9〉, fxτ (t) = 〈0, 2, 11〉 andfxτ (area) = 〈0, 4, 10〉.



5.2 Infinite Impulse Response (IIR) Filter

The first case study is a first-order direct form-II IIR filter (see extended version [12] for
details). We use our synthesis technique to discover the appropriate fixed-point types of
the coefficients of the filter. The input domain used in synthesis is−2 < input < 2.
The correctness condition for accuracy is to ensure that therelative error between the
floating-point and fixed-point program is less than0.1.
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Fig. 5: IIR Filter
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Fig. 6: FIR Filter

In order to test the correctness of our implementation, we feed a common input
signal to both the IIR filter implementations: floating-point version and the fixed-point
version obtained by our synthesis technique. The input signal is a linear chirp from0 to
Fs
2 Hz in 1 second.

input = (1− 2−15)× sin(π ×
Fs

2
× t2)

whereFs = 256 and t = 0 to 1 − 1
Fs

and is sampled at intervals of1
Fs

. Figure 5
shows the input, outputs of both implementations and the relative error between the two
outputs. We observe that the implementation satisfies the correctness condition and the
relative error remains below0.1 throughout the simulation.

5.3 Finite Impulse Response (FIR) Filter

The second case study is a low pass FIR filter of order 4 with tapcoefficients
0.0346, 0.2405, 0.4499, 0.2405 and0.0346. The input domain, correctness condition
and input signal to test the floating-point implementation and synthesized fixed-point
program are same as the previous case study. Figure 6 shows the input, outputs of both
implementations and the relative error between the two outputs. We observe that the
implementation satisfies the correctness condition and therelative error remains below
0.1 throughout the simulation.

5.4 Field Controlled DC Motor

The next case study is a field controlled DC Motor. It is a classic non-linear control
example from Khalil [13]. A detailed discussion of this example is presented in the



extended version [12]. The goal in this work was to find an optimal fixedpoint imple-
mentation of the control law computed mathematically for DCmotor. The computed
control law can be mathematically shown to be correct by designers who are more
comfortable in reasoning with real arithmetic but not with finite precision arithmetic.
Its implementation using floating-point computation also closely mimics the arithmetic
in reals but the control algorithms are often implemented using fixed-point computa-
tion on embedded platforms. We use our synthesis technique to automatically derive a
low cost fixed-point implementation of the control law computing inputu. The input
domain is0 ≤ ia, if , ω ≤ 1.5 whereia is armature current andif is field current. The
correctness condition for accuracy is that the absolute difference between the control
input u computed by fixed-point program and the floating-point program is less than
0.1.

Figure 7 shows the simulation of the system using the fixed-point implementation of
the controller and the floating-point implementation. Thisend-to-end simulation shows
that fixed-point program generated by our technique can be used to control the system
as effectively as the floating-point program. This illustrates the practical utility of our
technique. Figure 8 plots the difference between the control input computed by the
fixed-point program and the floating-point program. It showsthat the fixed-point types
synthesized using our approach satisfy the correctness condition, and the difference
between the control input computed by the fixed-point and floating-point program is
within the specified maximum error threshold of0.1. The number of inputs needed
in our approach was127. In contrast, the fixed-point types found using635(5X our
approach) randomly selected inputs violate the correctness condition for a large number
of inputs.
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Fixed-point Controller. Fixedpoint and floating-
point simulations almost overlap
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Fig. 8: DC Motor Error

5.5 Two-Wheeled Welding Mobile Robot

The next case study is a nonlinear controller for a two-wheeled welding mobile robot
(WMR) [3]. v andω are the straight and angular velocities of the WMR at its center
point which are the control parameters. Details of the robotmodel with equations of
motion and the control law derivation is presented in extended version [12].

We use our synthesis technique to automatically synthesizefixed-point program
computing both control inputs:v andω. We require that the relative error for both
controllers (v andω) are less than0.1. Figure 9(a) shows the reference line for welding
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Fig. 9: Welding Motor Robot

Table 1: Performance

Perf IIR Filter FIR Filter DC Motor WMR v WMR ω

Runtime (s) 268 379 4436 2218 1720
# Iterations 5 4 8 7 4

and Figure 9(b) shows the distance of the WMR from the reference line as a function
of time for both cases: firstly, when the controller is implemented as a floating-point
program and secondly, when the controller is implemented asa fixed-point program
synthesized using our technique. The robot starts a little away from the reference line
but quickly starts tracking the line in both cases. Figure 10(a) and Figure 10(b) show
the error between the floating-point controller and fixed-point controller for both control
inputs:v andω, respectively.
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Fig. 10: Welding Motor Robot

Performance: Table 1 summarizes the performance of our technique in the four case-
studies.



6 Related Work

Previous techniques for optimizing fixed-point types are based on statistical sampling
of the input space. These methods sample a large number of inputs and heuristically
solve an optimization problem that minimizes implementation cost while ensuring that
some correctness specification is met over the sampled inputs. The techniques differ
in in the heuristic search method employed, in the measure ofcost, or in how accu-
racy of fixed-point implementation is determined. Sung and Kum [22] use a heuristic
search technique which starts with the minimum wordlength implementation as the
initial guess. The wordlengths are increased one by one tillthe error falls below an
acceptable threshold. Shi et al. [20] propose a floating-point to fixed-point conversion
methodology for digital VLSI signal processing systems. Their approach is based on a
perturbation theory which shows that the change to the first order is a linear combination
of all the first- and second-order statistics of the quantization noise sources. Their tech-
nique works with general specification critera, as long as these can be represented as
large ensemble averages of functions of the signal outputs.For example, they use mean-
squared error (MSE) as the specification function. The cost of the implementation is a
quadratic function. Monte Carlo simulation of a large number of input examples is used
to formulate a quadratic optimization problem based on perturbation theory. In contrast,
our specification requires that the accuracy condition holds for all inputs and not just
on an average. Further, the cost function can be any arbitrary function for our tech-
nique and need not be quadratic. Perhaps most importantly, our technique does not rely
on apriori random sampling of a large number of input values,instead using optimiza-
tion to discover a small set ofinterestingexamples which suffice to discover optimal
fixed-point implementation. Purely analytical methods [21, 14] based on dataflow anal-
ysis have also been proposed for synthesizing fixed-point programs based on forward
and backward propagation in the program’s dataflow graph. The advantages of these
techniques are that they do not rely on picking the right inputs for simulation, can han-
dle arbitrary programs (with approximation), and can provide correctness guarantees.
However, they tend to produce very conservative wordlengthresults. Inductive synthe-
sis based on satisfiability solving has been previously usedfor synthesizing programs
from functional specifications. These approaches [11, 9] rely on constraint solving in
much the same way as we rely on optimization routines. However, these approaches
only seek to find a correct program, without any notion of costand optimization. An
automated technique to minimize quantization error in control implementations is pre-
sented in [18]. They achieve this by modifying the LQR-LQG performance criterion
and using the word-length as proxy for implementation cost.Our work predates [18]
and was first reported in Chapter 4 of [10].

7 Conclusion

In this paper, we presented a novel approach to automated synthesis of fixed-point pro-
gram from floating-point program by discovering the fixed-point types of the variables.
The program is synthesized to satisfy the provided correctness condition for accuracy
and to have optimal cost with respect to the provided cost model. We illustrated our
approach on a set of case studies from digital signal processing and control systems.
Acknowledgement: This research was done when first author was at UC Berkeley.
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