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Abstract. In this paper, we present an automated techniguag i: Synthesizing
Wordlengths_Aitomatically Using_€sting and ihduction which uses a combi-
nation of Nelder-Mead optimization based testing, and étida from examples
to automatically synthesize optimal fixedpoint implemé&otaof numerical rou-
tines. The design of numerical software is commonly donagufibating-point
arithmetic in design-environments such as Matlab. Howebese designs are
often implemented using fixed-point arithmetic for speed efficiency reasons
especially in embedded systems. The fixed-point implentienteeduces imple-
mentation cost, provides better performance, and reduo@grpconsumption.
The conversion from floating-point designs to fixed-poinleds subject to two
opposing constraints: (i) the word-width of fixed-point égomust be minimized,
and (ii) the outputs of the fixed-point program must be adeurkn this paper,
we propose a new solution to this problem. Our techniquesttiieefloating-point
program, specified accuracy and an implementation cost lnaodeprovides the
fixed-point program with specified accuracy and optimal enpentation cost.
We demonstrate the effectiveness of our approach on a sgaofptes from the
domain of automated control, robotics and digital signacpssing.

1 Introduction

Numerical software forms a critical component of systenamains such as robotics,
automated control and digital signal processing. Theseenigad routines have two
important characteristics. First, these routines areqafores that compute some math-
ematical functions designed ignoring precision issuesxefifipoint arithmetic. Design
environments such as Simulink/Stateflow and LabVIEW all@gign and simulation
of numerical routines using floating-point arithmetic tichisely resembles the more
intuitive real arithmetic. Second, the implementationrefde numerical routines run in
resource-constrained environments, requiring theimaigtition for low resource cost
and high performance. It is common for embedded platforniat@ processors with-
out floating-point units due to their added cost and perforcegpenalty. The signal
processing/control engineer must thus redesign her fipgitaint program to instead
usefixed-point arithmeticEach floating-point variable and operation in the original
program is simply replaced by a corresponding fixed-poiniatéde and operation, so
the basic structure of the program does not change. The fpiak of the redesign pro-
cess is to find theptimal fixed-point typewiz., the optimal wordlengths (bit-widths) of
fixed-point variables, so that the implementation on théfpia is optimal — lowest
cost and highest performance andthe resulting fixed-point program is sufficiently



accurate. The following novel contributions are made i3 théiper to address this
problem:

— We present a new approach for inductive synthesis of fixedtpoograms from
floating-point versions. The novelty stems in part from oge wf optimization:
we not only use optimization routines to minimize fixed-gaypes (bit-widths of
fixed-point variables), as previous approaches have, botsiiow how to use an
optimization oracle to systematically test the program gederate input-output
examples for inductive synthesis.

— We illustrate the practical effectiveness of our techniqngrograms drawn from
the domains of digital signal processing and control theleoy the control theory
examples, we not only exhibit the synthesized fixed-poiogpams, but also show
that these programs, when integrated in a feedback loopthéthest of the system,
perform as accurately as the original floating-point versio

2 Preliminaries

Floating-point arithmetic [8] is a system for approximgtegpresenting real numbers
that supports a wide range of values. It approximates a tgaber using a fixed num-
ber of significant digits scaled using an exponent. The figagioint system is so called
because the radix point cloatanywhere relative to the significant digits of the num-
ber. This is in contrast to fixed-point arithmetic [23] in whithere are a fixed number
of digits and the radix point is also fixed. Due to this featwrdloating-point repre-
sentation can represent a much wider range of values witkaime number of digits.
The most common floating-point representation used in coenpus that defined by
the IEEE 754 Standard [1]. In spite of the benefits of floatogat arithmetic, em-
bedded systems often use fixed-point arithmetic to redus@uree cost and improve
performance. A fixed-point number consists of a sign modeabitinteger part and a
fractional part. We denote the fixed-point type of a variabley fx7(x). Formally, a
fixed-point type is a triple:

(Signedness, IWL, FWL).

The sigh mode bisignedness is 0 if the data is unsigned andisf the data is signed.
The length of the integer part is called the integer wordilerfgwL) and the length of
the fractional part is called the fractional wordlendtiiLf). The fixed-point wordlength
(wL) is the sum of the integer wordlength and fractional wordtanthat iswL = IWL+
FWL. The operations supported by fixed-point arithmetic arestree as those in the
floating-point arithmetic standard [1] but the semantias di#fer on custom hardware.
For example, the rounding mode for arithmetic operationgccbe different, and the
result could be specified to saturate or overflow/underfloeaise the wordlength of a
variable is not sufficient to store a computed result. Onepeta semantics of fixed-
point operation is provided with the Fixed-point ToolboMiatlab [2]. The range of the
fixed-point number is much smaller compared to the range afifig-point numbers
for the same number of bits since the radix point is fixed andymamic adjustment of
precision is possible. Translating a floating-point progiato fixed-point program is
non-trivial and requires careful consideration of lossrefgision and range. The integer
wordlengths and fractional wordlengths of the fixed-poariables need to be carefully
selected to ensure that the computation remains accuratgtecified threshold. Please



refer to the extended version of the paper available as teahmeport [12] for more
background discussion.

3 Problem Definition

We introduce a simple illustrative example to explain thelgbem of synthesizing an
optimal fixed-point program from a floating-point programgahen present the formal
problem definition.

Floating-point Implementation: Given a floating-point program, we need to
synthesize fixed-point type for each floating-point varabl

Example 1: The floating-point program in this example 1 takeadius as
the input, and computes the correspondingea of the circle. Notice that the
fixed-point program is essentially identical to the floatpmnt version, ex-
cept that the fixed-point types of variablesypi,radius,t and area must
be identified. Recall that the fixed-point type is a triple;,iwly, fwly)
for j-th variable wheres; denotes theSignedness of the variable, iwl;
denotes the integer wordlength anflv1; denotes the fraction wordlength.

Procedure 1 Floating-point program t®rocedure 2 Fixed-point program to

compute circle area compute circle area
Input: radius Input: radius, (sj,iwlj, fwly) for
Output: area j=1,2,3,4

doublemypi, radius, t, area Output: area

mypi = 3.14159265358979323846 fx(s1,iwly, fwly) mypi

t = radius X radius fx(s2,iwlz, fwlz) radius

area = mypi X t fx(ss,iwls, fwls) t

return area fx(sa4,iwly, fwly) area

mypi = 3.14159265358979323846

t = radius X radius

area = mypi X t

return area
We useF’;(X) to denote the floating-point program with inpus= (x1, z2, ..., ).
Fr.(X, fx7) denotes the fixed-point version of the program, where thelfp@int
type of a variabler € X is fx7(z). Note that the fixed-point types ifi;,. (X, fx7) are
defined by the mappinfxr.

Input Domain: The context in which a fixed-point prografy, (X, fx7) is executed
often provides a precondition that must be satisfied by valpits (x1, s, ..., 2y).
This defines the input domain denoted Bym (X).

Example 2: In our example of computing the area of a circle, suppose et
are only interested in the radii in the randg@1,2.0). Then, the input domain
Dom(radius) is

radius > 0.1 A radius < 2.0



Correctness Condition for Accuracy: The correctness condition specifies an error
function Err(Fy (X)), Fre(X, fx7)), and a maximum error threshatdxError. The
error function and error threshold together define a bountherfdistance” between
outputs generated by the floating-point and fixed-point pao respectively. Ac-
curatefixed-point program is one whose error function lies withie error threshold
for all inputs in the input domain. Some common error funetiare:

e Absolute difference between the floating-point functior dixed-point function:
[Fi(X) = Fra (X, fx7)|
e Relative difference between the floating-point functior dixed-point function:
Fpi(X) = Fry (X fx7)
Fri(X)

e Moderated relative differenc .Ff’(););gg”)”fr);’f’”) . This approaches the relative

difference forFy;(X) >> ¢ and approaches a weighted absolute difference for
Fn(X) << 0. When Fy;(X) can be zero for some values &f, the moderated
relative difference remains bounded unlike the relatiieecBnce which becomes
unbounded.

The correctness condition for accuracgquires that for all inputs in the provided
input domainDom(X), the error functionErr(Fy(X), Fr. (X, fxr)) is below the
specified thresholdaxError; i.e.,

VX € Dom(X) . Err(Fp(X), Fyz (X, fx7)) < maxError

Example 3:1n our running example of computing the area of a circle, therdunction
is chosen to be relative difference, the error threslodd, and thus the correctness
condition isVradius, s.t. radius > 0.1 A radius < 2.0

Fyi(radius) — Fy,(radius, fxr)

<0.01
Fyi(radius) <00

Implementation Cost Model: The cost modebf the fixed-point program is a func-
tion mapping fixed-point types to a real number. For a giveedipoint program
Fro (X, fx7), let X = {t1,t0,...,t;} be the set of fixed-point program variables with
corresponding type&fxr(ty), fx7(t2), ..., fx7(t;)}. Then the cost model (or simply
cos) of Fy, is a function

cost : (fx7(t1), fx7(t2),...,fx7(tx)) = R

In practicecost is often just a function of the total wordlength&.(= IWL + FWL) of
the variables. It can incorporate hardware implementatietrics such as area, power
and delay. A number of cost models are available in the titeeq 15, 16, 5, 6], and all
of these can be used in our approach.

Example 4: The cost model proposed by Constantinides et al [6] for thaing exam-
ple yields the following cost function. We use this cost madell our examples.

cost(fx7(mypi), fx7(radius), fx7(t), fx7(area)) =

cdelay(WL(mypi)) + cmul (WL(radius), WL(radius), WL(t))
~+cmul(WL(mypi), WL(t), WL(area)) ,where
cdelay(l) =1+ 1 and cmul(ly,l2,1) = 0.6 X (I1 + 1) xlo — 0.85 % (I1 + 2 — )



The area of a multiplier grows almost linearly with both theefficients and the
data wordlength. The first term in the Constantinides moelgtesents this cost. The
second term represents the area cost of computational elemegjuired only for carry
propagation. The coefficients6 and0.85 were obtained through least-squared fitting
to area of several hundred multipliers of different coediitivalue and width [6].

Problem Definition

Definition 1 (Optimal  Fixed-point Types Synthesis). The optimal fixed-
point types synthesis problem is as follows. Given a flogtioigt program
Fro(X,fx7(T)) with variables 7', an input domain Dom(X), a correct-
ness conditionErr(Fy (X), Fr.(X,fx7(T))) < maxError, and a cost model
cost(fx7(t1), fx7(t2),...,fx7(t;)), the optimal fixed-point types synthesis problem
is to discover fixed-point types

fx7*(T) = {fx77(t1), fx77(t2), ..., fx7" (tx)}

such that the fixed-point prograf; (X' ) with the above types for fixed-point variables
satisfies the correctness condition for accuracy, that is,

(a) VX € Dom(X) . Err(Fp(X), Frs(X, fx77(T))) < maxError

and has minimal cost with respect to the given cost functioargg all fixed-point types
that satisfy condition (a), that is,

(b) fx7* =  argmin  cost(fx7(T))

fx7 satisfies (a)

Our goal is to automate this search for optimal fixed-poipes; We illustrate this
problem using the running example below.

Example 5: In our running example of computing therea of a circle we need
to discoverfx7 ™ (mypi), fx7* (radius), fx7*(t) andfxr " (area) such that

(a) the fixed-point program with the given fixed-point typesisies the correctness
condition; that isyradius, s.t., radius > 0.1 A radius < 2.0

Fyi(radius) — Fy,(radius, fx77)

<0.01
Fyi(radius) <0

(b) and the cost is minimized; that is,

fx7* =  argmin  cost(fx7(mypi,radius,t,area))
fx7 satisfies (a)

We use this example to illustrate the trade-off betweenaodterror and how a human
might use trial and error to discover the correct wordleagtile vary the wordlength
of the variables. The integer wordlength is selected tochwwerflow and the remaining
bits are used for fractional wordlength.

Case 1 (Figure 1): WL = 12 for all variables. fxr(mypi) =
(0,2,10), fx7(radius) = (0,1, 11), fx7(t) = (0,2, 10), fx7(area) = (0, 4, 8). Cost
is 179.80.

Case 2 (Figure 2): WL = 16 for all variables. fxr(mypi) =



(0,2,14), fx7(radius) = (0,1,15),fx7(t) = (0,2,14),fx7r(area) = (0,4,12).
Cost is316.20.
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Fig.1: WL = 12. Error threshold a0.01 is vio- Fig. 2: WL. = 16. Error threshold a0.01 is not
lated. violated.
As we will show in the next section, our approach computesifpeint types that
meet the accuracy threshold and yield a cost of dol.65, which, while being less
than the cost in Case 1, satisfies the correctness critékimiChse 2. In the following

section, we discuss our automated approach to solve thiggmno

4 Our Approach

A central idea behind our approaciwati is to identify a small set ahterestinginputs
S(X) using testing from the input domailnom (X ) such that the optimal implementa-
tion found using induction that satisfies the correctnesslition for the inputs in5 (X))
will be optimal and correct for all inputs in the given inpurdain Dom(X).

Procedure 3Overall Synthesis Algorithnewati

Input: Floating-point progrant’;,,, Fixed-point progrant’;,, with fixed-point variable§’, Do-
main of inputsDom, Error functionErr, maximum error thresholdaxError, Cost Model
cost, maximum wordlength®L,,,q..

Output: Fixed-point typefxr for variablesT” or INFEASIBLE
S° = random sample frolDom, Bad® = S°,i =0

while Bad' # () do _ _
i=i+1,5 =S5"1UBad !, fxrt = optInduce(Fyp, Ffs, Dom, Err,maxError,

cost,WLinaz, S*)

if fx7' = L then
return INFEASIBLE
end if
Bad' = testErr(Fyp, Frz, fx7°, Dom, Err, maxError)
end while
return fxr* = fxr’

The top-level synthesis algorithm is presented in Proa8uWL,, .. IS an upper
bound on wordlengths beyond which it is non-optimal to useftked-point version.



The algorithm starts with a randomly selected set of exaslérom the given input
domain. Then, a fixed-point implementation that satisfiesabcuracy condition for
each of these inputs and is of minimal cost is synthesizewjuke routineptInduce.

If no such implementation is found, the algorithm repoxtseASIBLE. Otherwise, the
testing routinetestErr checks whether the implementation fails the correctness co
dition for any input. If so, a set of inputBad’ on which the implementation violates
the correctness condition are added to theSSetised for synthesis, and the process
is repeated. If the correctness condition is satisfied, ésalting fixed-point types are
output. In the rest of this section, we describe the main @repts of our approach in
detail, including the theoretical result.

4.1 Synthesizing Optimal Types for a Finite Input Set

TheoptInduce function (see Procedure 4) is used to obtain optimum fixadtpgpes
such that the fixed-point program with these types satisfiescorrectness condition
for a finite input setS and has minimal cost. First, the floating-point prograim is
executed for all the inputs in the sam@l@nd the range of each varialileas well as its
Signedness is recorded by the functiongtRange andisSigned respectively. Then,
the integer wordlengtiiwL sufficient to represent the computed range is assigned to
each variable; and theSignednessis 1 if the variable takes both positive and negative
values, and otherwise. If the fixed-point program with maximum wordI#m&WL,,, ..
fails the correctness condition, we conclude that the ®gighs not feasible and return
L. If not, we search for the wordlength with minimum cost dgiigy the correctness
condition using our optimization oract®s. The resultis used to compute the fractional
wordlengths, and the resulting fixed-point types are retdrn

More precisely, Os solves the following optimization problem ovefxr:
Minimize cost(fx7) s.t.

/\ Err(Fy(z,fx7), Fi(x)) < maxError 1)
€S

Let us reflect on the nature of the above optimization problEne overall synthesis
algorithm might make several calls 8 for solving the optimization problem for
different sets of inputs and hena®g must be a fast procedure. But it is a discrete
optimization problem with a non-convex constraint spagepdlem class that is known
to be computationally hard [7]. This rules out any compotadily efficient algorithm
to implementO¢ without sacrificing correctness guarantees. Since theespfganssible
types grows exponentially with the number of variablestdxforce search techniques
will not scale beyond a few variables. Satisfiability sob/ean also not be directly
exploited to search for optimal wordlengths since the erisal quantification is over
the types and not the variables. The arithmetic operatue théferent semantics when
operating on operands with different types and hence, tlyanay to encode this search
problem as a satisfiability problem is to case-spkhaustivelyon all possible types
(word-lengths), where each case encodes the fixed-poigrgmowith one possible
type. The number of such cases is exponential in the numbttreo¥ariables in the
program under synthesis and hence, SAT problems will be sbbmas exponentially
large in size. Further, one would need to invoke SAT solveutiple times in order
to optimize the cost function. Thus, satisfiability solviwguld be a wrong choice to
address this problem. Further, the space of possible typasd not totally ordered



and hence, binary search like techniques would also not.vixanka binary search like
technique to work, we will need to define a domination ordgmer the types which
has three properties. Firstly, it is a total ordering relatiSecondly, if a particular type
assignment satisfies the correctness condition for alltsfiien all dominating types
satisfy the correctness condition for all inputs. Thirdhg cost function is monotonic
with respect to the domination ordering relation. In geheh#gs may not be feasible for
any given floating-point program and cost function. HencejmplemenOg using a
greedy procedurgetMinCostWL presented in Procedure 5.

Procedure 40ptimal Fixed-Point Types Synthesigst Induce
Input: Floating-point prograni’s,,, Fixed-point progranf’s, with fixed-point variableg”, Do-
main of inputsDom, Error function Err, maximum error thresholdlaxError, Cost Model
cost, max wordlength&iL,,q., Input.S
Output: Optimal wordlengthsiL for inputs.S or L
for all fixed-point variable; in Fy, do
IWL(t;) = [log(getRange(ti, Fyi,S) + 1)], Signedness(¢;) = isSigned (s, Fyi, S)
end for
if WLinaz < IWL then
return L
end if
fx7 = (Signedness, IWL, WLyqz — IWL)
if Err(Frp(z), Fya(x, fx7)) > maxError then
return L
end if
WL = getMinCostWL(Fyp, Fyz, Dom, Err,maxError, frcost, Wemaz, S, IWL, Signedness)
return fx7 = (Signedness, IWL, WL — IWL)

4.2 \Verifying a Candidate Fixed-Point Program

In order to verify that the fixed-point prograii, (X, fx7) satisfies the correctness
condition, we need to check if the following logical formugasatisfiable.

3X € Dom(X) Err(Fre(X,fx7), Ffp(X)) > maxError 2)

If the formula is unsatisfiable, there is no input on which filked-point program vio-
lates the correctness condition.

For arbitrary (possibly non-linear) floating-point and fixgoint arithmetic opera-
tions, it is extremely difficult to solve such a problem in gifee with current constraint
solvers. Instead, we use a novel optimization-based appriwaverify the candidate
fixed-point program. The intuition behind using an optintiza-based approach is that
the error function is continuous in the inputs or with verwfdiscontinuities [17, 4],
and hence, optimization routines can easily find inputs Wwii@ximize error function
by starting from some random input and gradually adjustiregdutput to increase the
value of the error function. The optimization oracle is used to maximize the error
function Err(Fy, (X, fx7), Ff, (X)) over the domaimDom(X). If there is no input
X € Dom(X) for which the error function exceedmxError, the fixed-point pro-
gram is correct and we terminate. Otherwise, we obtain amplainput on which



Procedure 5getMinCostWL
Input: Floating-point progrant’y,,, Fixed-point progrant’s,, with fixed-point variable§’, Do-
main of inputsDom, Error function Err, maximum error thresholehax Err, Cost Model
cost, max wordlengthd&iL,,q.., Input.S
Output: Optimal wordlengthsiL
valcandWL = {WLpaz }
while valcandWL is not emptydo
WL = argmin  cost(vcWL), fx7 = (Signedness, IWL, WL — IWL), candWL = 0,
vcWLEvalcandWL
valcandWL = ()
for all fixed-point variablég; in Fy, do
WL (j) = WL(j) Vi # 4, WL'™ (i) = WL(i) — 1, WL () = WL(j) Vj # &, WL'"(3) =
WL(4) + 1, candWL = candWL U {WL'™ WL}
end for
for all cand in candWL do
candfxT = (Signedness, IWL, candWL — IWL)
if Err(Frp(2), Frz(z, cand)) < mazErr Vx € S
and cost(candfx7) < cost(fxr) then
valcandWL = valcandWL U {cand}
end if
end for
end while
return fxr

the fixed-point program violates the correctness condifidutiple inputs can also be
generated where they exist.

In practice, with the current state-of-the-art optimiaatroutines, it is difficult to
implementOy to find a global optimum. Instead, we use a numerical optitiina
routine based on the Nelder-Mead method [19] which can lesadiitrary non-linear
functions and generates local optima. Procedure 6 defiestErr which invokes the
Nelder-Mead routine (indicated byifgmaxlocal”). This routine requires one to supply
a starting value ofX', which we generate randomly. To find multiple inputs, we ke/o
the routine from different random initial points and recatidexample inputs on which
the fixed-point program violates the correctness condit®nce a global optimum is
not guaranteed, we repeat this seaneltAttempts times before declaring that the
fixed-point program is correct.

The following theorem summarizes the correctness and afitinguarantees of our
approach. Proof is presented in extended version [12].

Theorem 1. The synthesis procedure presented in Procedure 3 is gusgdrb syn-
thesize the fixed-point program which is of minimal cost aattsBes the correctness
condition for accuracy if optimization oracl&3s and Oy find globally-optimal solu-
tions (when they exist).

5 Experiments

Apart from the running example, we present case studies @R and control
systems to illustrate the utility of the presented synthegiproach. Our technique
was implemented in Matlab, and Nelder-Mead implementadicailable in Matlab as



Procedure 6Verification RoutinetestErr

Input: Floating-point prograni’s,,, Fixed-point progrant’s,, Fixed-point typefxr, Domain of
inputs Dom, Error functionErr, maximum error thresholdaxError

Output: Inputs Bad on which F,, violates correctness condition

Bad =10
while ¢ < maxAttempts do
) = i + 1, Xo = random sample from Dom, Xcand =

argmaxlocal(Err(Fyp(X), Fra (X, £x7)), Xo)
X

if Err(Frp(Xeand), Fre(Xcand, £x7)) > maxError andX € Dom then
Bad = Bad U{X}
end if
end while

fminsearch function was used for numerical optimization. We use thestamtinides
et al [6] cost model.

5.1 Running Example

We illustrate the synthesis approach (more details in [fi@}sented in Section 4 using
the running example. Our algorithm usetlexamples and needddterations. To eval-
uate our approach, we exhaustively simulated the genefiggztipoint program on the
given domain (.1 < radius < 2) at intervals 0f0.0001. The result is presented in
Figure 5.1.

1 12
Input

Fig. 3: Our Approach on Running ExampleFig. 4: Running Example Using Random Inputs.

As a point of comparison, we also show the result of syntliregi fixed-point pro-
gram using theptInduce routine with100 inputs ¢ times as many as our approach)
selected uniformly at random (Figure 5.1). The horizorited In the plots denotes the
maximum error threshold df.01 on the relative difference error function. The cost of
the fixed-point program synthesized with random samplirg i65, and the fixed-point
types of the variables a7 (mypi) = (0,2, 3), fx7(radius) = (0,1,8), fx7(t) =
(0,2,10) andfx7(area) = (0,4,8). Notice, however, that it is incorrect for a large
number of inputs. In contrast, the cost of the implementgpieoduced using our tech-
nique is104.65, and the fixed-point types of the variables &e (mypi) = (0,2, 3),
fx7(radius) = (0, 1,9), fx7(t) = (0,2, 11) andfxr(area) = (0,4, 10).



5.2 Infinite Impulse Response (IIR) Filter

The first case study is a first-order direct form-I1 lIR filtee€ extended version [12] for
details). We use our synthesis technique to discover theopppte fixed-point types of
the coefficients of the filter. The input domain used in sygithés —2 < input < 2.
The correctness condition for accuracy is to ensure thatetlaéive error between the
floating-point and fixed-point program is less thah.

Signal
o N

|
N

o

§ &

Relative Difference

Fig. 6: FIR Filter

Fig. 5: IR Filter
In order to test the correctness of our implementation, veel f@8 common input
signal to both the IIR filter implementations: floating-poiersion and the fixed-point
version obtained by our synthesis technique. The inpugsigra linear chirp front) to
£s Hzin1 second.

|4 F
input = (1 —271%) x sin(r x 78 x t2)

whereF's = 256 andt = 0to 1 — ﬁ and is sampled at intervals % Figure 5
shows the input, outputs of both implementations and ttaivel error between the two
outputs. We observe that the implementation satisfies tire@oess condition and the
relative error remains belo® 1 throughout the simulation.

5.3 Finite Impulse Response (FIR) Filter

The second case study is a low pass FIR filter of order 4 with ciagfficients
0.0346, 0.2405, 0.4499, 0.2405 and 0.0346. The input domain, correctness condition
and input signal to test the floating-point implementatiod aynthesized fixed-point
program are same as the previous case study. Figure 6 sheptit, outputs of both
implementations and the relative error between the twouistpVe observe that the

implementation satisfies the correctness condition andetlagive error remains below
0.1 throughout the simulation.

5.4 Field Controlled DC Motor

The next case study is a field controlled DC Motor. It is a étassn-linear control
example from Khalil [13]. A detailed discussion of this examis presented in the



extended version [12]. The goal in this work was to find anroptifixedpoint imple-
mentation of the control law computed mathematically for ®Gtor. The computed
control law can be mathematically shown to be correct bygiesis who are more
comfortable in reasoning with real arithmetic but not withité precision arithmetic.
Its implementation using floating-point computation alkisely mimics the arithmetic
in reals but the control algorithms are often implementdadgifixed-point computa-
tion on embedded platforms. We use our synthesis technoqaetomatically derive a
low cost fixed-point implementation of the control law cortipg inputw. The input
domainis0 < i,,%7,w < 1.5 wherei, is armature current ang is field current. The
correctness condition for accuracy is that the absolutereifice between the control
input w computed by fixed-point program and the floating-point paogiis less than
0.1.

Figure 7 shows the simulation of the system using the fixadtjpraplementation of
the controller and the floating-point implementation. Ténsl-to-end simulation shows
that fixed-point program generated by our technique can &eé tescontrol the system
as effectively as the floating-point program. This illugésathe practical utility of our
technique. Figure 8 plots the difference between the cbimput computed by the
fixed-point program and the floating-point program. It shole the fixed-point types
synthesized using our approach satisfy the correctnegditmon and the difference
between the control input computed by the fixed-point andifigagpoint program is
within the specified maximum error threshold @fi. The number of inputs needed
in our approach was27. In contrast, the fixed-point types found usi6gs(5X our
approach) randomly selected inputs violate the correstoasdition for a large number
of inputs.

— Error with our Approach
—Error Using Random Inputs|
- - Specified Threshold

/.

Variables

o o

7} s e
Time Time

Fig.7: DC Motor Using Floating-point and Fig. 8: DC Motor Error
Fixed-point Controller. Fixedpoint and floating-
point simulations almost overlap

5.5 Two-Wheeled Welding Mobile Robot

The next case study is a nonlinear controller for a two-wée@lelding mobile robot
(WMR) [3]. v andw are the straight and angular velocities of the WMR at its eent
point which are the control parameters. Details of the rabotlel with equations of
motion and the control law derivation is presented in exéeheersion [12].

We use our synthesis technique to automatically synthdsigd-point program
computing both control inputs: andw. We require that the relative error for both
controllers ¢ andw) are less thaf.1. Figure 9(a) shows the reference line for welding
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Fig. 9: Welding Motor Robot

Table 1: Performance

Perf IIR Filter|FIR FilteryDC MotorfWMR v|WMR w
Runtime (s) 268 379 4436 2218 | 1720
# Iterations 5 4 8 7 4

and Figure 9(b) shows the distance of the WMR from the refadine as a function
of time for both cases: firstly, when the controller is impknted as a floating-point
program and secondly, when the controller is implemented fised-point program

synthesized using our technique. The robot starts a liti@yarom the reference line
but quickly starts tracking the line in both cases. Figuré)@nd Figure 10(b) show
the error between the floating-point controller and fixeéhpcontroller for both control

inputs:v andw, respectively.
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Fig. 10: Welding Motor Robot

Performance: Table 1 summarizes the performance of our technique in tinecfase-

studies.



6 Related Work

Previous techniques for optimizing fixed-point types arselobon statistical sampling
of the input space. These methods sample a large numberwkiapd heuristically
solve an optimization problem that minimizes implemewtatost while ensuring that
some correctness specification is met over the sampledsinpbe techniques differ
in in the heuristic search method employed, in the measuostf or in how accu-
racy of fixed-point implementation is determined. Sung anen22] use a heuristic
search technique which starts with the minimum wordlengtplémentation as the
initial guess. The wordlengths are increased one by oné¢hgllerror falls below an
acceptable threshold. Shi et al. [20] propose a floatingigoifixed-point conversion
methodology for digital VLSI signal processing systemseiflapproach is based on a
perturbation theory which shows that the change to the fidgiras a linear combination
of all the first- and second-order statistics of the quatitimanoise sources. Their tech-
nique works with general specification critera, as long asd¢hcan be represented as
large ensemble averages of functions of the signal outpatexample, they use mean-
squared error (MSE) as the specification function. The cbgteoimplementation is a
quadratic function. Monte Carlo simulation of a large numdifénput examples is used
to formulate a quadratic optimization problem based orupkation theory. In contrast,
our specification requires that the accuracy condition sédd all inputs and not just
on an average. Further, the cost function can be any anpifuaction for our tech-
nique and need not be quadratic. Perhaps most importaatlyechnique does not rely
on apriori random sampling of a large number of input valirestead using optimiza-
tion to discover a small set afiterestingexamples which suffice to discover optimal
fixed-point implementation. Purely analytical methods, f4] based on dataflow anal-
ysis have also been proposed for synthesizing fixed-poograms based on forward
and backward propagation in the program’s dataflow grapk. advantages of these
techniques are that they do not rely on picking the right tafjor simulation, can han-
dle arbitrary programs (with approximation), and can pdevtorrectness guarantees.
However, they tend to produce very conservative wordlengghlts. Inductive synthe-
sis based on satisfiability solving has been previously Beedynthesizing programs
from functional specifications. These approaches [11,[9]ae constraint solving in
much the same way as we rely on optimization routines. Howyé¢ese approaches
only seek to find a correct program, without any notion of @sd optimization. An
automated technique to minimize quantization error in @dmnplementations is pre-
sented in [18]. They achieve this by modifying the LQR-LQGfpenance criterion
and using the word-length as proxy for implementation cOsir work predates [18]
and was first reported in Chapter 4 of [10].

7 Conclusion

In this paper, we presented a novel approach to automatéoesys of fixed-point pro-
gram from floating-point program by discovering the fixedrptypes of the variables.
The program is synthesized to satisfy the provided coresstitondition for accuracy
and to have optimal cost with respect to the provided costahdtle illustrated our
approach on a set of case studies from digital signal proweasd control systems.
Acknowledgement This research was done when first author was at UC Berkeley.
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