
Sherlock : A Tool for Verification of Deep Neural
Networks

Souradeep Dutta∗, Taisa Kushner ∗, Susmit Jha †, Sriram Sankaranarayanan∗,
Natarajan Shankar†, Ashish Tiwari #

∗University of Colorado, Boulder, USA
† SRI International, Menlo Park, USA

Microsoft, Redmond, USA

Abstract—We present Sherlock a tool for verification of deep
neural networks along with some recent applications of the tool
to verification and control problems for autonomous systems.
Deep Neural Networks have emerged as an ubiquitous choice of
concept representation in machine learning, and are commonly
used as function approximators in many learning tasks. Learning
methods using deep neural networks are often referred to as
deep learning, and they have reached human-level accuracy on
benchmark data-sets for several tasks such as image classification
and speech recognition. This has inspired the adoption and
integration of deep learning methods into safety-critical systems.
For example, deep learning is often used in perception and
several decision-making modules in automated vehicles. This has
created a challenge in verifying and certifying these systems using
traditional approaches developed for software and hardware
verification. Further, these models are known to be brittle and
prone to adversarial examples. Establishing robustness of these
models is, thus, an important challenge. For safe integration of
learning into critical systems, we must be able to encapsulate
these models into assumption-guarantee contracts by verifying
guarantees on the outputs of the model given the assumptions
on its inputs. We discuss some of our recent work on this topic
of verifying deep neural networks that is currently available as
an open-source tool, Sherlock.

Index Terms—neural networks, verification, optimization.

I. INTRODUCTION AND MOTIVATION

A large of part of machine learning is about building
good function approximations from input-output data. Deep
Neural Networks have emerged as an obvious choice for
this task since they are “universal” function approximators.
Deep NNs are also being adopted in high-assurance systems,
such as automated control, perception pipeline of autonomous
vehicles, and aircraft collision avoidance. But unlike other
traditional system design approaches, there are few known
and scalable methods to verify these systems. We address this
problem by proposing novel techniques to solve this problem.
This paper is a survey of the techniques presented in [1], [2],
[11] that has been implemented in a publicly available open-
source tool, Sherlock 1.

Sherlock uses mixed-integer linear programming (MILP)
solver but it does not merely compile the verification into
an MILP problem. Sherlock first uses sound piecewise lin-
earization of the nonlinear activation function to define an
encoding of the neural network semantics into mixed-integer

1https://github.com/souradeep-111/sherlock

constraints involving real-valued variables and binary variables
that arise from the (piecewise) linearized activation func-
tions. Such an encoding into MILP is a standard approach
to handling piecewise linear functions. As such, the input
constraints φ(x) are added to the MILP and next, the output
variable is separately maximized and minimized to infer the
corresponding guarantee that holds on the output. This enables
us to infer an assume-guarantee contract on the overall deep
neural network. Sherlock augments this simple use of MILP
solving with a local search that exploits the local continuity
and differentiability properties of the function represented by
the network. These properties are not exploited by MILP
solvers which typically use a branch-and-cut approach. On
the other hand, local search alone may get “stuck” in local
minima. Sherlock handles local minima by using the MILP
solver to search for a solution that is “better” than the current
local minimum or conclude that no such solution exists. Thus,
by alternating between inexpensive local search iterations and
relatively expensive MILP solver calls, Sherlock can exploit
local properties of the neural network function but at the same
time avoid the problem of local minima, and thus, solve the
verification of deep neural networks more efficiently.

II. VERIFICATION PROBLEM / SET PROPAGATION

At an abstract level a deep neural network computes a
function from a set of inputs to some set of outputs. The
question that we address here is as follows:

Given a neural network (NN), and constraints (as-
sumptions) which define a set of inputs to the
network, provide a tight over-approximation (guar-
antee) of the output set.

This serves as one of the main primitives in verification
of neural networks. Deep neural networks are very common
in applications such as image classification and autonomous
control. In image classification networks, since each image is a
point in the high dimensional pixel space, a polyhedral set may
be used to represent all possible bounded perturbations to a
given image. If, for such a set, we can guarantee that the output
of the classification remains unaltered, then we have proved
that the neural network is robust to bounded pixel noise.
Besides image classification, neural networks are increasingly
used in the control of autonomous systems, such as self-driving
cars, unmanned aerial vehicles, and other robotic systems. A

typical approach to verify these systems involves a reachability
computation to estimate the forward reachable set as time
evolves. Using this, it is possible to prove that, no matter
what the initial condition of a system is, it always reaches
a target region in finite time. For instance, we wish prove
that, an autonomous car whose inputs are provided by a
neural network controller’s feedback, will remain within a
fixed lateral distance from the center of the road (desired
trajectory), while remaining under the speed limit.

A. Preliminaries
We will address the output range analysis problem for a

neural network with a single output. The extension to multiple
output neural networks will be straightforward. Let x ∈ <n

be an input to a NN, and y ∈ < be the output of the network.
A typical neural network consists of layers, where each layer
computes some function on the outputs of the previous layer
and feeds it’s output to the next layer. That is, for a k layer
neural network, we get a composition of k functions. Each
function is a matrix multiplication, followed by an element
wise computation of an activation function. A k layer neural
network with N neurons in each hidden layer is described by
a set of matrices: [(W0, b0), . . . , (Wk−1, bk−1), (Wk, bk)].

Definition II.1 (ReLU Unit). Each neuron in the network
implements a nonlinear function σ linking its input value to
the output value. In this paper, we consider ReLU units that
implement the function σ(z) : max(z, 0).

We extend the definition of σ to apply component-wise to

vectors z as σ(z) :

 σ(z1)
...

σ(zn)

.

Taking σ to be the ReLU function, we describe the overall
function defined by a given network N as follows:

Definition II.2 (Function Computed by neural networks).
Given a neural network N as described above, the function
F : <n → < computed by the neural network is given by the
composition F := Fk ◦ · · · ◦ F0 wherein Fi(z) : σ(Wiz + bi)
is the function computed by the ith hidden layer with F0

denoting the function linking the inputs to the first layer and
Fk linking the last layer to the output.

III. METHODOLOGY

Let N be a neural network with n input vector, x, a single
output y, and weights [(W0, b0), . . . , (Wk, bk). Let FN be the
function defined by such a network. The general problem of
verifying neural network and establishing an assume-guarantee
contract on its inputs and outputs can be simplified to range
estimation problem by suitably transforming the inputs and
outputs such that the assumption constraints are described
by a polyhedron and the guarantee constraints to be derived
over the outputs can be represented as intervals. The universal
approximation property of neural networks can be used to
approximately encode such transformation as a part of the
network itself. Thus, we focus on range estimation problem
and rely on reducing other verification problems to it.

x0 x1 x2 x3x4x5 x6x7x8

L1 L2

L3

L4

L5

L6

u∗

u2

u1

G1

G2

Fig. 1. A schematic figure showing our approach showing alternating series
of local search L1, . . . , L6 and “global search” G1, G2 iterations. The points
x2, x5, x8 represent local minima wherein our approach transitions from local
search iterations to global search iterations.

Problem Statement : The range estimation problem is
defined as follows:
• INPUTS: Neural Network N , input constraints P : Ax ≤
b and a tolerance parameter δ > 0.

• OUTPUT: An interval [`, u] such that (∀ x ∈ P) FN (x) ∈
[`, u]. i.e, [`, u] contains the range of FN over inputs x ∈
P . Furthermore, we require the interval to be tight:

(max
x∈P

FN (x) ≥ u− δ), (min
x∈P

FN (x) ≤ `+ δ) .

We will assume that the input polyhedron P is compact:
i.e, it is closed and has a bounded volume. It was shown
in [3] that even proving simple properties is NP complete.
Simple properties, like proving that there exists an assignment
from input set to an output set, which respects the constraints
imposed by the neural network. So, one of the fundamental
challenges in this problem is to tackle the exponential nature.

A. Overall Approach

Without loss of generality, we will focus on estimating the
upper bound u. The case for the lower bound will be entirely
analogous. First, we note that a single Mixed Integer Linear
Programming (MILP) problem can be formulated, and then
query a solver to directly compute u. Unfortunately, that can
be quite expensive in practice. Therefore, our approach will
combine a series of MILP feasibility problems alternating with
local search steps.

Figure 1 shows a pictorial representation of the overall
approach. The approach incrementally finds a series of approx-
imations to the upper bound u1 < u2 < · · · < u∗, culminating
in the final bound u = u∗.

1) The first level u1 is found by choosing a randomly
sampled point x0 ∈ P .

2) Next, we perform a series of local iteration steps result-
ing in samples x1, . . . , xi that perform gradient ascent
until these steps cannot obtain any further improvement.
We take u2 = FN (xi).

3) A “global search” step is now performed to check if
there is any point x ∈ P such that FN (x) ≥ u2 + δ.
This is obtained by solving a MILP feasibility problem.

4) If the global search fails to find a solution, then we
declare u∗ = u2 + δ.

5) Otherwise, we obtain a new witness point xi+1 such that
FN (xi+1) ≥ u2 + δ.

6) We now go back to the local search step.

The ideas discussed here for the output range analysis have
been implemented in Sherlock [1]. For neural networks with
multiple outputs, we can individually find the bounds for each
of the network outputs, and then combine them to form a
hyper-rectange in the output dimensional space. This can be
extended to using a template polyhedron to obtain tighter
bounds, in the output dimension, described in the next section.
In general, we can obtain guarantees on the output from a
given class defined by the constraint template used in the
minimization/maximization step of the presented approach.
Our current implementation in Sherlock built on top of MILP
solvers requires the template to be linear.

IV. APPLICATION 1: REACHABILITY ANALYSIS

In this section, we briefly describe how we can use the above
algorithm to verify behaviors of autonomous systems, with
neural networks as controllers. Details are presented in [2]. A
closed loop system, C, is described by the neural networks fp,
for the system model, and fh, for the control law. The plant
model function fp, gives the state of the system in the next
time step, given the states of the system at the current time
step. That is, x(t+1) = fp(x(t), fh(x(t))), where x(t) ∈ <n,
is the state of the system at time time t, in an n dimensional
space.

Thus, given an initial state X0 (represented as a polyhedron
over the state space), we wish to compute symbolic repre-
sentations for sets X1, X2, . . . , XK wherein Xi represents
the reachable states of the closed loop system given by the
composition of the plant fp and the feedback law fh, in
i steps. Here K is some fixed time horizon. We will use
range computation, as a primitive for checking reachability,
invariance and stability properties.

A. Post-Condition Operator

The computation of the reach sets of the closed loop system
starts with an effort to compute over-approximation of the post
operator:

post(X; fp, fh) : {x ∈ Rn | (∃x0 ∈ X) x = fp(x0, fh(x0))} .

For an input set X , the exact set of the output map of
the post operator can be prohibitively expensive to compute:
in general, it’s a union of polyhedrons, the count of which
is exponential in the number of neurons in the two given
networks fp and fh. Instead, we use a single polyhedron P (X)
that approximates the post condition.

For that purpose, we use a template polyhedra:

Definition IV.1 (Template Polyhedra). A template T is a set
of expressions T : {e1, . . . , er} wherein each ei is an linear

expression of the form ctix over the state variables. A template
polyhedron P over a template T is of the form:

r∧
j=1

`j ≤ ej ≤ uj ,

for bounds `j , uj over each template expression ej .

For a fixed template T , the reachable sets are represented
by template polyhedra over the above templates. The post
condition operation post(X; fp, fh), can now be substituted
by a template-based post-condition operator postT (X; fp, fh)
that produces bounds `j , uj for each ej ∈ T by solving the
following optimization problem:

`j(uj) : min(max) ej [x] s.t.x0 ∈ X0, u = fh(x0), x = fp(x0,u) .

The above optimization problem, is defined using neural
network functions fh and fp. However, the combination of
local search and MILP encoding used in our tool SHERLOCK
can be modified almost trivially to solve this optimization
problem. Furthermore, the guarantees used in SHERLOCK
extend. Thus, we guarantee that the reported result is no
more than ε away from the true value, for the given tolerance
parameter ε.

B. Accelerating Reachable Set Computation
The computation of reach sets can be extended beyond

single step using Sherlock. It is possible to use the tool for a k
step reachability post

(k)
T (X; fp, h) with the tolerance factor ε,

in a very straight forward manner. To achieve this, we calculate
the bounds `(k)j , u

(k)
j as

`
(k)
j (u

(k)
j) :

min(max) ej [xk]

s.t. x0 ∈ X,
x1 = fp(x0, fh(x0)),

. . . , xk = fp(xk−1, fh(xk−1)

 .

C. Checking Reachability Property:
A fundamental goal in computing reachable sets is to

prove that the system trajectories converge to a target set,
starting from the initial set. It suffices to show that the reach
sets computed eventually land inside the target set T , in a
finite number of time steps. Thus, the problem of checking
reachability of a target set T is performed iteratively as

V. APPLICATION 2: ROBUST CONTROL

Range propagation ideas can be useful much beyond veri-
fication goals. An artificial pancreas is a device which is used
for the automatic regulation of blood glucose in patients with
Type 1 Diabetes. In [11], the authors trained a neural network
to predict the blood glucose values of a patient 1 hour into the
future, from the blood glucose and insulin values, in the past 3
hours. That is, G(t+ 60mins) = Fnn(G[. . .], I[. . .]), where
G[. . .] and I[. . .] represents an array of blood glucose, and
insulin input values in the past 3 hours at 5 mins intervals, and
Fnn is a neural network model of the system. Thus, given the
array G[. . .] and I[. . .], we used the techniques implemented
in Sherlock to compute SAFE values of the insulin inputs such
that the blood glucose stays within the euglycemic range.

TABLE I
PERFORMANCE RESULTS ON NETWORKS TRAINED ON FUNCTIONS WITH KNOWN MAXIMA AND MINIMA . LEGEND: x NUMBER OF INPUTS, k NUMBER

OF LAYERS, N : TOTAL NUMBER OF NEURONS, T : CPU TIME TAKEN, Nc: NUMBER OF NODES EXPLORED. ALL THE TESTS WERE RUN ON A LINUX
SERVER RUNNING UBUNTU 17.04 WITH 24 CORES, AND 64GB RAM (DNC : DID NOT COMPLETE)

23 cores single core
Monolithic Monolithic Reluplex

ID x k N T Nc T Nc T Nc T Nc T
N0 2 1 100 1s 94 2.3s 24 0.4s 44 0.3s 25 9.0
N1 2 1 200 2.2s 166 3.6s 29 0.9s 71 0.8s 38 1m50s
N2 2 1 500 7.8s 961 12.6s 236 2s 138 2.9s 257 15m59s
N3 2 1 500 1.5s 189 0.5s 43 0.6s 95 0.2s 53 12m25s
N4 2 1 1000 3m52s 32E3 3m52s 3E3 1m20s 4.8E3 35.6s 5.3E3 1h06m
N5 3 7 425 4s 6 6.1s 2 1.7s 2 0.9s 2 DNC
N6 3 4 762 3m47s 3.3E3 4m41s 3.6E3 37.8s 685 56.4s 2.2E3 DNC
N7 4 7 731 3.7s 1 7.7s 2 3.9s 1 3.1s 2 1h35m
N8 3 8 478 6.5s 3 40.8s 2 3.6s 3 3.3s 2 DNC
N9 3 8 778 18.3s 114 1m11s 2 12.5s 12 4.3s 73 DNC
N10 3 26 2340 50m18s 4.6E4 1h26m 6E4 17m12s 2.4E4 18m58s 1.9E4 DNC
N11 3 9 1527 5m44s 450 55m12s 6.4E3 56.4s 483 130.7s 560 DNC
N12 3 14 2292 24m17s 1.8E3 3h46m 2.4E4 8m11s 2.3E3 1h01m 1.6E4 DNC
N13 3 19 3057 4h10m 2.2E4 61h08m 6.6E4 1h7m 1.5E4 15h1m 1.5E5 DNC
N14 3 24 3822 72h39m 8.4E4 111h35m 1.1E5 5h57m 3E4 timeout - DNC
N15 3 127 6845 2m51s 1 timeout - 3m27s 1 timeout - DNC

VI. RESULTS AND TOOL

We did some preliminary comparisons with a recent solver
for deep neural networks called Reluplex [3]. Even though
Reluplex is an SMT solver, it can be used to perform set
propagation using a binary search wrapper. The preliminary
comparison shows that Sherlock is much faster than Relu-
plex used with a binary search wrapper [1]. Another set of
comparisons was using Sherlock, against a monolithic mixed
integer linear programming (MILP) solver. The results of the
comparison has been presented in Table I

We used Sherlock for verifying properties of various closed-
loop cyberphysical systems that have neural networks as con-
trollers [2]. We could prove that in finite number of steps, the
sets did converge to the goal region, for a suite of benchmarks.
This was done by set propagation using template polyhedrons.

In [11], we used the neural network model to predict
blood glucose values, and then used techniques presented in
Sherlock to implement an MPC controller. It was shown that
the controller implemented with Sherlock, had a much better
performance than the current state of the art.

VII. CONCLUSIONS AND FUTURE WORK

We are currently working on scaling our approach from a
few thousands neural units to hundreds of thousands required
to reason over state of the art deep learning models. We are
also working on using our approach to complement black-
box explaining-mining methods [9] to generate interpretable
approximations of the neural network model required in ap-
plications such as medical diagnosis.

Several recent efforts have achieved significant success in
tackling this important problem of verifying or robustly deep

neural networks. Our own previous work [1], [2], [11] and
recent papers such as [4]–[8], present a landscape of recent
progress on this problem. We have made the implementation
Sherlock available as an open-source tool to help accelerate
the progress on formally analyzing deep learning networks.

REFERENCES

[1] Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range
analysis for deep feedforward neural networks. In: NASA Formal
Methods. pp. 121138. (2018).

[2] Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and
Verification of Feedback Control System using Feedforward Neural
Networks. In Proceedings of Analysis and Design of Hybrid Systems,
2018.

[3] G. Katz, C. Barrett, D. Dill, K. Julian, M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks ,
https://arxiv.org/abs/1702.01135

[4] F Leofante, N Narodytska, L Pulina, A Tacchella. Automated Veri-
fication of Neural Networks: Advances, Challenges and Perspectives,
https://arxiv.org/abs/1805.09938

[5] W Xiang, P Musau, A A Wild, D M Lopez, N Hamilton, X Yang, J
Rosenfeld, T. Johnson. Verification for Machine Learning, Autonomy,
and Neural Networks Survey. https://arxiv.org/abs/1810.01989

[6] X. Huang, M. Kwiatkowska, S. Wang and M. Wu. Safety Verification
of Deep Neural Networks. Computer Aided Verification, 2017.

[7] M. Mirman, T. Gehr, M. Vechev. Differentiable Abstract Interpretation
for Provably Robust Neural Networks. International Conference on
Machine Learning, 2018.

[8] D. Gopinath, G. Katz, C. Păsăreanu, and C. Barrett. DeepSafe: A Data-
Driven Approach for Assessing Robustness of Neural Networks. In:
ATVA 2018

[9] S Jha , V Raman, A Pinto, T Sahai, and M Francis. On Learning
Sparse Boolean Formulae For Explaining AI Decisions, NASA Formal
Methods, 2017.

[10] M Abadi et al, Tensorflow : Large-Scale Machine Learning on Hetero-
geneous Systems, https://www.tensorflow.org/

[11] Dutta S., Kushner T., Sankaranarayanan S. Robust Data-Driven Control
of Artificial Pancreas Systems Using Neural Networks. In: CMSB 2018.

