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AI reaches human-level accuracy on benchmark 
datasets
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Going deeper with convolutions.  (Inception) C Szegedy et al, 2014

Face Detection.  Taigman et al, 2014

Switchboard 
benchmark



Beyond aggregate numbers
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Machine learning very susceptible 
to adversarial attacks.
Szegedy et al,  2013, 2014

Only allowed to modify 
the value of 1 pixel.  
70.97% of the natural 
images can be perturbed 
to at least one target 
class by modifying just 
one pixel with 97.47% 
confidence on average.                                              
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Machine learning very susceptible 
to adversarial attacks.
Szegedy et al,  2013, 2014

Only allowed to modify 
the value of 1 pixel.  
70.97% of the natural 
images can be perturbed 
to at least one target 
class by modifying just 
one pixel with 97.47% 
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Statistically good doesn’t mean logically/conceptually good.
Understanding deep learning requires rethinking generalization.
C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals
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Trust
• Global Assume/Guarantee Contracts on DNNs
• Closed-loop verification of  NN controllers
• Extracting and Integrating Temporal Logic into 

Learned Control

Interpretability
• Explaining Decisions as Sparse Boolean

Formula Learning
• Inverse Reinforcement Learning of 

Temporal Specifications 

Resilience
• Adversarial Robustness

TRINITY: Trust, Resilience and Interpretability
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Machine Learning 



Need for explanation
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Why did we take the San Mateo bridge instead of the Bay Bridge ?

• This route is faster.
• There is traffic on Bay 

Bridge.
• There is an accident just 

after Bay Bridge backing 
up traffic.

Scalable but less interpretable : 
Neural Networks, Support Vector 
Machines

Interpretable but less scalable: 
Decision Trees, Linear Regression 



Local Explanations of Complex Models

7/13/19 16

Not reverse engineering an ML model but finding explanation locally for one decision.
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Local Explanations of Complex Models

7/14/19 18

Simplified Sufficient 
Cause

Not reverse engineering an ML model but finding explanation locally for one decision.



Local Explanations in AI

7/14/19 19

Simplified Sufficient 

Cause

Formulation in AI:
• Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 

"Why Should I Trust You?: Explaining the Predictions of 

Any Classifier." International Conference on Knowledge 
Discovery and Data Mining. ACM, 2016.

• Hayes, Bradley, and Julie A. Shah. "Improving Robot 

Controller Transparency Through Autonomous Policy 

Explanation." International Conference on Human-Robot 
Interaction. ACM, 2017.

Measure of how well g approximates f

Measure of complexity of g

Not reverse engineering an ML model but finding explanation locally for one decision.



Model Agnostic Explanation through 

Boolean Learning 
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Why does the path not go 
through Green?

Let each point in k-dimensions 
(for some k) correspond to a 

map.

Maps in which optimum 
path goes via green

Maps in which optimum 
path does not go via green

Find a Boolean formula !
such that 

! ⇔ #$%ℎ '()%$*) +
! ⇒ #$%ℎ '()%$*) +



Explanations as Learning Boolean Formula

A*

!"#$%&'( : 
Using explanation vocabulary
Ex: Obstacle presence

!)*"+, : 
Some property of the output
Ex: Some cells not selected

-./01234 ⇒ -67.89
-./01234 ⇔ -67.89



How difficult is it? Boolean formula learning

50x50 grid has 2"#$%#$ possible explanations even if 
vocabulary only considers presence/absence of obstacles.

Scalability: Usually the feature space or vocabulary is large. 
For a map, its order of features in the map. For an image, it is 
order of the image’s resolution. 

Guarantee: Is the sampled space of maps enough to generate 
the explanation with some quantifiable probabilistic 
guarantee?

&'()*+,- ⇒ &/0'12
&'()*+,- ⇔ &/0'12
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Theoretical Result: 

Learning Boolean formula even approximately is hard.  3-
DNF is not learnable in Probably Approximately Correct 
framework unless RP = NP.

&'()*+,- ⇒ &/0'12
&'()*+,- ⇔ &/0'12



Two Key Ideas

Active learning Boolean formula !"#$%&'( and not learning from fixed sample.

Explanations are often short and involve only few variables !

1. Vocabulary is large.
2. How many samples (and what 

distribution) to consider for 
learning explanation ?

3. Learning Boolean formula with 
PAC guarantees is hard.
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Two Key Ideas

Active learning Boolean formula !"#$%&'( and not learning from fixed sample.

Explanations are often short and involve only few variables !

Involves only two variables.
If we knew which two, we had 
only 2*+ = 16
possible explanations. 

How do we find these relevant 
variables?



Actively Learning Boolean Formula

!
Evaluates assignments and returns T,F

Assignments to V
m1 = (0,0,0,1,1,0,1) 
m2 = (0,0,1,1,0,1,0)

A*

!"#$%& : 
Some property of the output
Ex: Some cells not selected

!$'()*+, (V) : 
Using explanation vocabulary
Ex: Obstacle presence



Actively Learning Relevant Variables

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

,-./0123 "& &<+8&7
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Assignments to V
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!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m1 : True
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Assignments to V
m2 = (0,0,1,1,0,1,0)
m4 = (0,0,1,1,1,1,0)

Actively Learning Relevant Variables

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m2: False, m4: True

Hamming 
Distance = 1

Fifth variable <= is relevant !! 



Actively Learning Relevant Variables

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m2: False, m4: True

Repeat to find all 
relevant variables



Actively Learning Relevant Variables

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

Random Sample 
Till Oracle differs

Binary Search Over 
Hamming Distance

<#(1/(1 − A)) <#(|;|)2|D|

For each assignment 
to relevant variables

Relevant variables of EFGHIJKL found with confidence M in 
N O IL(|P|/(Q − M))



Actively Learning Boolean Formula

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

Build Truth Table for 
the relevant variables 
U
<=8&* >+&7: 2|A|

Used distinguishing example based 
approach from ICSE’10

BCDEFGHI found with confidence J in 
K(M N FI(|O|/(Q − J)))

Scales to ~200 variables

A PAC Learning Framework



Experiments

7/14/19 40

A* Planning
|V| = 2500 
|U| <= 4
Runtime < 3 minutes

Reactive Exploration 
Strategy
|V| = 96
|U| <= 2
Runtime < 5 seconds

Image Classification: MNIST

10^153 10^28

Image Classification: ImageNet 
with Carlini-Wagner 
Adversarial Attacks



Experiments
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Why 3Why 9



Why not just do sensitivity analysis?
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Why not just do sensitivity analysis?
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Sensitivity (IG) Sparse Boolean 
Formula Learning



Learning Temporal Logic Properties from 
Noisy Time Traces
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Bernoulli 
Distribution

Satisfaction 
probability 
for Alice 
given 
dynamics

Satisfaction 
probability 
given uniformly 
random actions

Specification
Demonstrations

∝ e

Marcell Vazquez-Chanlatte, Susmit Jha , Ashish Tiwari, Mark K. Ho and Sanjit A. Seshia. 
Learning Task Specifications from Demonstrations. NeurIPS, 2018

● Composable
● Resilient to changes in task context
● Interpretable
● Can leverage formal methods tools



Communicating Using Demonstrations: 
More involved example
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1. Avoid fire (red).

2. Eventually Recharge (yellow).

3. If you touch the water (blue) then 
dry off (brown) before recharging 
(yellow).

Temporal Logic Specification

H: Historically
O: Once
S: Since



Interpretability / Explanation Generation 
in TRINITY
• Inferring and Conveying Intentionality: Beyond Numerical Rewards to 

Logical Intentions. Susmit Jha and John Rushby.
AAAI Spring Symposium, Towards Conscious AI Systems, 2019

• Learning Task Specifications from Demonstrations. Marcell Vazquez-
Chanlatte, Susmit Jha, Ashish Tiwari, Mark K. Ho and Sanjit A. Seshia.
Neural Information Processing Systems (NeurIPS), 2018

• Explaining AI Decisions Using Efficient Methods for Learning Sparse 
Boolean Formulae. Susmit Jha, Tuhin Sahai, Vasumathi Raman, Alessandro 
Pinto and Michael Francis.
Journal of Automated Reasoning, 2018

• On Learning Sparse Boolean Formulae For Explaining AI Decisions. Susmit 
Jha, Vasumathi Raman, Alessandro Pinto, Tuhin Sahai, and Michael Francis.
NASA Formal Methods (NFM), 2017
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Thanks!
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If you are interested in building trusted, resilient and interpretable AI, please 
contact me with your CV if you are interested. 

Co-travelers (Present and Past): 
Brian Burns, Margaret Chapman, Ajay 
Divakaran, Sauradeep Dutta, Michael 
Francis, Mark K. Ho, Uyeong Jang, 
Brian Jalaian, Somesh Jha, Patrick 
Lincoln, Alessandro Pinto, Vasu 
Raman, John Rushby, Dorsa Sadigh, 
Sriram Sankaranarayanan, Sanjit A. 
Seshia, Natarajan Shankar, Ashish 
Tiwari, Claire Tomlin, Marcell 
Vazquez-Chanlatte, Gunjan Verma

Funding sources (Present and Past): 
DARPA,  US Army Research
Laboratory, National Science 
Foundation
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