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Model Checking
• The size of the state space of a system can 

grow exponentially in the number of atomic 
propositions. – State Explosion

• Several methods to tame the state explosion 
problem – symbolic (BDD s), partial order 
reduction. Distributed Model checking is a 
complementary technique. 

• Real world model checkers do run on network of 
processors. DMC adds to the arsenal against 
state explosion.

• Assumption based DMC is a relatively recent 
development [Brim et al]



Assumption based Distributed 

Model Checking (Brim et al)

• Split the Kripke structure into smaller 

fragments.

• A fragment F is any set of states S of the 

Kripke structure (and the induced transition relation R|S

by this set) and includes copies of all those 

states which have a transition into any state 

in the set S.

• Fragments are model checked individually by 

making assumptions on the “border” states 

and then communication occurs to solve 

inter-dependencies.



How Fragmentation Works?

Portion of a Kripke Structure:
The circled outline shows the set
around which we want to form
a fragment

Border States

Core States

The Fragment built around the
States within the circle in the
Kripke Structure



Bad Cases of Assumption Based DMC

A Bad Instance with poor choice of sets 5 - clique

The subsets are shown by dotted 
boxes. For these subsets, each of 
the fragment will be as large as the 
original Kripke structure and the 
purpose of the distributed algorithm 
will fail. 

Irrespective of the choice of 
our subsets, each fragment 
will be as large as the whole 
Kripke structure once again.



A good example

The dotted boxes surround the subsets used for constructing the 
partition. The dashed lines show the actual partitions 
themselves. Also, the undirected edges indicate transitions 
possible in both directions. 

Observe that the partition was able to reduce the size of the 
Kripke structure rather well. 



Biochemical Kripke Structures
• a biochemical reaction takes the system from a state 

with biochemical entities matching the left-hand side of 
the reaction rule, into one of the other states in which the 
biochemical entities of the right-hand side have been 
added.

• The biochemical entities which appear only in the left-
hand side of the rule and not in the right-hand side may 
be nondeterministically present or absent in the target 
state.

• each biochemical entity is associated with a proposition.
• If the biochemical entity is present in a state, the 

associated boolean proposition is true else it is false.
• a transition occurs from one state to another by 

“executing” a biochemical reaction and the truth values 
of the boolean propositions change to reflect the 
biochemical entities added or removed



An Example Model
• Abstract Modeling.

– Consider the scenario of A and B reacting to form C and D,
• A + B → C + D

– We want to non-deterministically capture all possible scenarios:
• A + B + ¬C + ¬D è ¬A + B + C + D
• A + B + ¬C + ¬D è A + ¬B + C + D
• A + B + ¬C + ¬D è ¬A + ¬B + C + D
• ……………………………………….
• ……………………………………….
• A + B + C + D è ¬A + B + C + D
• A + B + C + D è A + ¬B + C + D
• A + B + C + D è ¬A + ¬B + C + D
• A + B + C + D è A + B + C + D



Some notes on the Kripke 

Structure Model

• By using this boolean abstraction, such models are capable of 

reasoning about all possible behaviors of the system with unknown 

concentration values and unknown kinetics parameters [Fages et 

al].

• This modeling is particularly useful for complex chemical systems 

like biochemical pathways where even a boolean abstraction can 

generate valuable results.

• It is also now well appreciated that biological models, despite their 

hybrid nature, indeed have many digital (boolean) controls.

• A Kripke structure is an asynchronous formalism. 

– In particular, two reactions occurring “simultaneously” can be modeled 

as one occurring after another because of the 

• non-deterministic modeling with respect to the reactants

• and the asynchronous interleaving semantics of Kripke structures.



Bound on the number of chemical 
entities involved in a reaction

• The number of biochemical entities reacting in a 
chemical reaction is fairly small.

• almost 60% of the reactions in the databases we analyzed 
have no more than two reactants or two products.

• no reaction was found with more than six reactants or 
products in these databases of widely differing organisms.

• explained by the fact that there is a very low probability of the 
interaction of more than a few entities at the atomic level.

• Contrast this with an arithmetic operation a := 
a×b, a system wide reset in a VLSI chip or the 
setting of bits in a long flag register.

• the Kripke structure of these hardware or software systems 
from one state to another such that the Hamming distance 
between them is arbitrarily large.



The HumanCyc, EcoCyc, AnthraCyc and 
YeastCyc Databases Reactions Summary

The bar charts 
clearly show that 
most reactions 
have small number 
of reactants and 
products. There is 
no reaction having 
more than 6 
reactants or 
products among 
some 3000 
biochemical 
reactions
in these databases.



Bounded Hamming Distance 
Kripke Structures

• A k - Bounded Hamming Distance Kripke structure has a 
transition between two states in the Kripke structure only 
if the Hamming distance between the propositional 
labels of these states is at most k.



Biochemical Kripke Structures are 
BHDKS

Theorem 1. A biochemical Kripke structure K is a k – Bounded Hamming 
Distance Kripke structure (BHDKS) for some small k.

Proof Sketch: 
If there is a transition from s to s′, then the system executes some 
reaction at state s.

Now, the reaction has at most r reactants and at most p
products, where r and p are small. 

When the reaction is executed, the reactants can non-deterministically 
be removed from the system, while the products are added to
the system. 

Thus, s′ can differ from s in at most k = r + p chemical entities.



Edge Density of BHDKS
Theorem 2. A state in the k - Bounded Hamming Distance Kripke structure 
with log n number of propositions (where n > 1) has a degree of at most 
(log n) k.
Proof. 
Consider all possible neighbors N(s) of some state s in the Kripke 
structure.

From the definition of BHDKS, we know that s′ 2 N(s) iff H(s,s’) ≤ k.

Hence, N(s) can have no more states than those which are atmost k 
away from s.

k

Thus, an upper bound = åi = 0 ( log(n) C i ) 

· (log (n) ) k

The number of transitions in a Bounded Hamming Distance Kripke structure
are no more than polynomially (in the number of propositions in the Kripke 
structure) larger than the number of states.



Polynomial Fragments for BHDKS
Theorem 3. Given any set T ½ S of the state space of a k - Bounded
Hamming Distance Kripke structure K = (S,R) with log (n)
propositions, the size of the smallest separator V of T w.r.t. S is
no more than |T| . ( log (n) ) k.

Proof: Straightforward from bound on edge density

Corollary: Given any set T ½ S of the state space of a k - Bounded 
Hamming Distance Kripke structure K = (S,R) with log (n) 
propositions, the size of the fragment associated with T  is no more 
than |T| . ( 1 + ( log (n) ) k ).

Proof: Any set of states with its separator w.r.t. the rest of the Kripke 
structure contains a fragment.

This shows that the size of the state space which needs to be put 
at one node of the distributed computation grows only polynomially 
in the number of propositions in the Bounded Hamming Distance 
Kripke structure.



Example Hypercube Splitting
The sets S1, S2, S3 and S4 are formed as before by dividing the state 
space into 4 parts around 4 equidistant centers 02p, 0p1p, 12p and 1p0p.

If we take these sets as the corners of a 2-D hypercube (square), then 
one can show that there can be no transitions between the distributed 
nodes along the diagonals.

So the size of each fragment is at most 3 times the size of the core 
set at each node



Bound on the size of the 
fragment

Theorem 4. For a BHDKS Kripke structure split uniformly around four 
centers 02p, 0p1p, 12p and 1p0p, there can be no transition along the 
diagonal as long as p > k.
Proof: Suppose there is a transition from the set around 02p to the set 
around 12p say from x to y. Then, H(x,y) · k. 

Also, by construction, H(x,02p) · p/2   and H(y,12p) · p/2.

Now by triangle inequality, H(y,02p) + H(y,12p) ¸ H(02p,12p) 
i.e.           H(y,02p) ¸ 2p - p/2.

Also, by triangle inequality, H(x,y) + H(x,02p) ¸ H(y,02p)
i.e.        H(x,y) ¸ H(y,02p) - H(x,02p)
i.e.        H(x,y) ¸ 2p - p/2 - p/2
i.e.        H(x,y) ¸ p

Thus, as long as p > k, there can be no transitions along the diagonal.



HyperCube Splitting of State Space
• Consider a state space split into 2l parts in a l -

Dimensional hypercube – the centers of each of the 2l

split state spaces Pi are uniformly distributed.

Theorem 5. For a k-BHDKS Kripke structure with ( log (n) ) propositions split 
uniformly around 2l centers 0lp, 0(l−1)p 1p, . . . . . . 0p1(l−1)p, 1lp ( where p = ( log (n) / 
l) ) and p > k, there can be no transition along any of the diagonals of this l -
dimensional hypercube.



No transitions exist among non-
adjacent distributed nodes

Suppose that there is a transition from the set around  q to the set around  d
say from  x  to  y . Then,  H(x,y) · k.

Also, d and q are along some diagonal and not adjacent. So,
H(q,d) ¸ 2p . 

Also, by construction,  H(x,q) · p/2   and  H(y,d) · p/2 . 

By triangle inequality  H(y,q) + H(y,d) ¸ H(q,d)  
i.e.  H(y,q) ¸ 2p - p/2 

(assuming the worst case that  d and  q are as close as possible
without being neighbors in the  l -dimensional hypercube) .

Also, by triangle inequality,  H(x,y) + H(x,q) ¸ H(y,q) 
i.e.  H(x,y) ¸ H(y,q) - H(x,q) 

i.e.  H(x,y) ¸ p 



Size of the fragment in Hypercube 
fragmentation

Corollary 2. The size of the separator of the set associated with each distributed 
node in the l-Dimensional hypercube is at most l times the size of the largest 
possible core set at each node i.e. ( l / 2 l ) . n

Proof. 
Each node in the l-Dimensional hypercube has transitions only to the 
neighbouring nodes in the hypercube. 

In an l-dimensional hypercube, there are l neighbours. 

By construction, each neighbour has no more than ( n / 2 l ) core states.

Corollary The size of the fragment associated with each node in the l-
Dimensional hypercube is at most (l + 1) times the size of the largest 
possible core set at each node i.e.( (l + 1)  / 2 l ) . n.



Experimental Results

The ratio indicates that the fragment is only a small multiple of the size of the core



Experimental Results

The ratio indicates that the fragment is only a small multiple of the size of the core. 
In this case, the ratios are even more favorable.



Conclusions and Future Work
• We have seen that biochemical Kripke structures can be divided into 

fragments as small as polynomial in the number of atomic propositions 
present in the Kripke structure.

• The hypercube algorithm tends to distribute the entire exponential state 
space in a uniform manner, and one may raise the question as to the benefit 
of this exercise when the reachable state space is small.

• Our explicit distributed construction of the state space partitioning assumes 
that there is a number close to log n which has factors that can be used as l 
- the dimension of the embedding hypercube.

• The choice of the hypercube in which the system is embedded and the 
assignment of different embeddings onto the same hypercube (by changing 
the order of propositions in the state space) needs to be studied.

• Bounded Hamming Distance Kripke structures are also very suitable for 
Bounded Model Checking.

– It is an interesting challenge to exploit the locality in transitions to derive SAT 
heuristics for BHDKS.

• Can the insight be used to guide design for verifiability of control paths in 
circuits ?
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