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Abstract
Several methods have recently been developed
for computing attributions of a neural network’s
prediction over the input features. However, these
existing approaches for computing attributions
are noisy and not robust to small perturbations
of the input. This paper uses the recently
identified connection between dynamical systems
and residual neural networks to show that
the attributions computed over neural stochastic
differential equations (SDEs) are less noisy,
visually sharper, and quantitatively more robust.
Using dynamical systems theory, we theoretically
analyze the robustness of these attributions. We
also experimentally demonstrate the efficacy of
our approach in providing smoother, visually
sharper and quantitatively robust attributions
by computing attributions for ImageNet images
using ResNet-50, WideResNet-101 models and
ResNeXt-101 models.

1 Introduction
Deep neural networks (DNNs) are increasingly deployed
in healthcare, security, autonomous driving, and other
safety-critical applications. The responsible use of deep
learning in such high-assurance applications necessitates the
capability to explain their decisions. However, while a
plethora of attribution and explanation techniques have been
developed [Simonyan et al., 2013; Sundararajan et al., 2017;
Shrikumar et al., 2017; Lundberg and Lee, 2017; Kim et al.,
2018], these techniques are known to be noisy and not robust
to small input perturbations [Ghorbani et al., 2019]. The
noise in pixel-level attributions (Figure 1, center) produced by
path-integral-based methods [Sturmfels et al., 2020; Smilkov
et al., 2017; Xu et al., 2020; Dombrowski et al., 2019] has
recently been analyzed, and factors such as high manifold
curvature and choice of baselines have been identified.

In this paper, we focus on attributions computed over
deep learning models that can be analyzed using the theory
of dynamical systems [Chen et al., 2015; Lu et al., 2018].
Residual neural networks have been modeled using neural
ordinary differential equations (ODEs) [Chen et al., 2018],
and stochastic variants of ResNets are described using

neural stochastic differential equations (SDEs) [Wang et al.,
2019; Liu et al., 2020; Wang et al., 2019]. We leverage
methods from the study of stochastic dynamical systems to
show theoretically and empirically that a suitable injection
of noise into the residual layers during training produces
robust attributions. While addition of noise in the inputs
during inference has empirically been shown to improve
attributions [Smilkov et al., 2017], we use the theory of
stochastic differential equations to inject noise at different
residual layers and improve the robustness of attributions
computed by path-integrals [Lundberg and Lee, 2017].

Figure 1: Input image (left) and results of DeepLIFT SHAP applied
to Neural ODEs (center) and Neural SDEs (right). Neural SDEs
(right) have visually sharper and less noisy (smoother) attributions.

We make the following contributions towards computing
robust attributions of deep neural network decisions:

1. We perform a worst-case analysis to show that the total
attribution computed on neural SDEs trained using noise
are more robust than attributions computed on neural
ODEs. We are the first to use the connection between
dynamical systems and residual neural networks to study
the quality of attributions.

2. This robustness of the attributions of our SDE approach
is agnostic to the choice of path-integral attribution
methods (see tables 1, 2 and 3). We quantitatively
demonstrate improvement in the computed attributions
using the sensitivity metric [Yeh et al., 2019].

3. We experimentally illustrate that attributions computed
using neural SDEs are qualitatively better, smoother and
visually sharper than those obtained from neural ODEs.
This improvement is demonstrated on several attribution
methods including DeepLIFT SHAP, Smooth-Grad, and
Integrated Gradients (see figures 1 through 4).



2 Overview
We present a brief summary of our observations and sketch
our theoretical analysis as well as our experimental results.
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3 Theoretical Results
Attributions of neural stochastic differential equations are in-
herently more robust than attributions of traditional residual
networks. In Sec. 3.1, we briefly recapitulate the axiomatic
definition of integrated gradients. Next, we recall the connec-
tion between residual networks with noise and neural stochas-
tic differential equations (SDEs) in Section 3.2. Finally, we
will establish the robustness of attributions for neural SDEs
in Section 3.4.

3.1 Axiomatic Attributions

In this section, we discuss the axiomatic definition of attri-
butions that will be used in subsequent sections to establish
their robustness for neural SDEs. Attribution methods includ-
ing integrated gradients and Shapley values often employ the
notion of a baseline input xb; for example, the all dark im-
age can be the baseline for images. The baseline can also be
a set of random inputs where attribution is computed as an
expected value.

Let the attribution for the j-th feature and output label i be
Ai

j(x). The attribution for the j-th input feature depends on
the complete input x and not just xj . The treatment for each
logit is similar, and so, we drop the logit/class and denote the
network output simply as F(·) and attribution as Aj(x). For
simplicity, we use the baseline input xb = 0 for computing
attributions. We make the following two assumptions on the
DNN model and the attributions, which reflect the fact that
the model is well-trained and the attribution method is well-
founded:

1. The attribution is dominated by the linear term. This is
also an assumption made by attribution methods based
on Shapley values such as Integrated Gradient [Sun-
dararajan et al., 2017] which define attribution as the
path integral of the gradients of the DNN output with
respect to that feature along the path from the baseline
xb to the input x, that is,

Ai
j(x) = (xj � xb

j) ⇥
Z 1

↵=0

@jF i(xb + ↵(x � xb))d↵

(1)
where the gradient of i-th logit output of the model along
the j-th feature is denoted by @jF i(·).

2. Attributions are complete i.e. the following is true for
any input x and the baseline input xb:

F(x) � F(xb) =

nX

k=1

Ak(x) where x has n features.

(2)
Shapley value methods such as Integrated Gradient and
DeepShap [Sundararajan et al., 2017; Lundberg and
Lee, 2017] satisfy this axiom too.

Our proof for robustness of attributions will use this re-

lationship between the robustness of attributions
@Ai

j(x)

@xj
and

the output F(x) of the model.

3.2 Neural Stochastic Differential Equations
We connect with the recent literature on dynamical systems
for neural networks to analyze the robustness of attributions
of neural networks. In particular, we use this connection in
Sec. 3.4 to show that neural SDEs lead to more robust attri-
butions that neural ODEs.

Dynamical systems like ordinary and stochastic differential
equations can be used to model residual networks (ResNets)
as such dynamical systems can represent the process of in-
ference and training in ResNets [Chen et al., 2015; Chang
et al., 2017; Sonoda and Murata, 2017; Chen et al., 2018;
Lu et al., 2018]. This connection between dynamical systems
and neural networks gives us the opportunity to theoretically
study the robustness of neural network attributions using re-
sults from dynamical systems. That is the key focus of our
investigations in this paper.

A building block of a residual neural network [He et al.,
2016] with the residual mapping R(X(i), W (i)) can be de-
scribed using the following equation:

X(i + 1) = X(i) + R(X(i), W (i)) (3)

Here, X(i) is the input to the ith residual network building
block and X(i+1) is the corresponding output that serves as
an input to the next building block. The weights of the neural
network layers in this ResNet building block are denoted by
W (i). In particular, X(0) denoted the input x in this notation
and the output F of a network with depth T is denoted by
X(T ) in this framework.

After taking suitable limits, the evolution of the residual
network can be described by the ResNet ordinary differential
equation (ODE):

dX(t)

dt
= G(X(t), W (t)) (4)

Here, G(X(t), W (t)) = lim�t!0
R(X(t),W (t))

�t and X(0) is
the input to the neural network.

The residual network is extended to a stochastic residual
network by adding a noise term N(i):

X(i + 1) = X(i) + R(X(i), W (i)) + N(i) (5)
The neural differential equation corresponding to such
stochastic residual networks is obtained by generalizing to a
stochastic differential equation. Here, the noise is modeled
by weighing a Brownian motion term B(t) with a suitable
diffusion coefficient �(X(t), t):

dX(t) = G(X(t), W (t)) dt + �(X(t), t) dB(t) (6)
A natural question to ask is: Can we theoretically and

experimentally show that attributions corresponding to neu-
ral stochastic differential equations (stochastic ResNets) are
inherently more robust that neural ordinary differential equa-
tions (ResNets)?

We will first mathematically compute the impact of a small
change in the input on the attribution of a traditional ResNet
or neural ordinary differential equation in Sec. 3.3. Next, we
will theoretically compute the impact of a small change in
the input on the attribution of a stochastic ResNet or neural
stochastic differential equation in Sec. 3.4, and mathemati-
cally demonstrate that neural stochastic differential equations
generate more robust attributions.
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Figure 2: An overview of our observations and results: ResNets
with stochastic noise injected into the residual layers or neural SDEs
create more robust attributions. We show that the sum of change in
attributions is smaller for neural SDEs than that for neural ODEs.
The input image of a green snake on a green background and
its attributions are shown; the integrated gradient attribution with
noise tunnel for our neural SDE approach (bottom right) is visually
sharper than the integrated gradient (IG) attribution as well as IG
coupled to a noise tunnel for the neural ODE (bottom left).

Given a traditional residual network

X(i+ 1) = X(i) +R(X(i),W (i)),

the layers i of the network can be viewed as a time
discretization of a continuous neural ODE

dX(t)

dt
= G(X(t),W (t))

We suggest the use of neural SDEs

dX(t) = G(X(t),W (t)) dt+ σ(X(t), t) dB(t)

or ResNets with noise N(i) injected at each residual layer

X(i+ 1) = X(i) +R(X(i),W (i)) +N(i)

This injection of noise in each residual layer of a residual
network or a neural SDE leads to visually sharper and
more robust attributions than the traditional residual networks
or neural ODEs. Experimentally, we find that attribution
methods create visually sharper attributions for neural SDEs.
For example, Figure 2 shows how integrated gradients for
neural SDE clearly identifies the green snake in the bottom
right figure while both integrated gradients and integrated
gradients with noise tunnel [Kokhlikyan et al., 2020] produce

Figure 3: Input image (left) and results for Integrated Gradients with
noise tunnel on neural ODE (center) and the same attribution method
applied to our neural SDE (right). The attribution produced by our
neural SDE is visibly sharper than the neural ODE attribution.

diffused attributions in the bottom left figures. The snake in
the input image and in the attributions is highlighted using a
dashed red box.
A natural question to ask is:

Can we theoretically and experimentally show that
attributions corresponding to neural SDEs are
more robust to small input perturbations than those
obtained from neural ODEs?

Brief Summary of Results. Our main result is theoretical
and empirical demonstration that neural SDEs create more
robust attributions than neural ODEs. We consider a neural
network such that a change in the input εx causes a change
of εF in the output layer of the neural SDE or ODE. In
most applications, linear layers are then used for projecting
to a different dimension such as the number of classes of the
overall deep learning classification model. In this paper, we
focus on the residual layers to study the incremental benefit of
using neural SDEs, and the output of the SDE or ODE model
is of the same dimension as that of the input.

If the evolution of the dynamical system is contracting
in the neighborhood of an input x, and εF is less than εx,
then the dynamics is inherently robust to perturbations in
the input. But in most applications such as classification,
the dynamics is expected to increase εF with the increase in
input perturbation helping create easy-to-learn classification
boundaries between the inputs of different classes. This
points to a natural trade-off between robustness and accuracy
of deep learning models. While an increase in the ratio εF/εx
helps improve the model accuracy, it also indicates a reduced
robustness as very small changes εx in the input will produce
large changes εF in the output representation. The difference
in the sum of attribution over the features of an input x
and that over a perturbed input x̂ can be computed as the
difference in the output representations when the attribution
technique satisfies the completeness axiom [Sundararajan et
al., 2017]. We observe that robustness of the attribution for
an input x appears to be at odds with model accuracy. This is
not surprising since models with high accuracy are naturally
expected to have multiple refined cues helping in making
decisions, and a small change in the input can alter the cues
responsible for the decision even if the decision itself remains
unchanged. This presence of different set of fine-grained cues
in high-accuracy models would generate different attributions
over the input features.



3 Approach and Theoretical Results
We show that the attributions of neural stochastic differential
equations are inherently more robust than the attributions
of their deterministic counterparts. In Sec. 3.1, we briefly
recapitulate the axiomatic definition of integrated gradients
and then review the connection between residual networks
with noise and neural stochastic differential equations (SDEs)
in Section 3.2 before presenting our theoretical results.

3.1 Axiomatic Attributions
In this section, we discuss the axiomatic definition of
attributions that will be used in subsequent sections to
establish the robustness for neural SDEs. Attribution methods
including integrated gradients and Shapley values often
employ the notion of a baseline input xb; for example, the
all dark image can be a baseline for images. The baseline can
also be a set of random inputs where attribution is computed
as an expected value.

Let the attribution for the j-th feature and output label
i be denoted by Aij(x). The attribution for the j-th input
feature depends on the complete input x and not just xj . The
treatment for each logit is similar, and so, we can drop the
logit/class and denote the network output simply as F(·) and
attribution as Aj(x). One can readily make the following
two assumptions on the DNN model and the attributions,
which reflect that the model is well-trained and the attribution
method is well-founded:

1. The attribution is dominated by the linear term.
This is also an assumption made by attribution
methods based on Shapley values such as Integrated
Gradient [Sundararajan et al., 2017] which define
attribution as the path integral of the gradients of the
DNN output with respect to that feature along the path
from the baseline xb to the input x, that is,

Aij(x) = (xj − xbj)×
∫ 1

α=0

∂jF i(xb + α(x− xb))dα

(1)
where the gradient of i-th logit output of the model along
the j-th feature is denoted by ∂jF i(·).

2. Attributions are complete, that is, the following property
is true for any input x and the baseline input xb:

F(x)−F(xb) =
n∑

k=1

Ak(x) where x has n features.

(2)
Shapley value methods such as Integrated Gradient and
DeepShap [Sundararajan et al., 2017; Lundberg and
Lee, 2017] satisfy this completeness axiom.

Our proof for robustness of attributions uses the
completeness axiom satisfied by the attribution methods. In
particular, we use this axiom to establish that the pathwise
change in the sum of attributions

∑n
k=1 (Ak(x̂)−Ak(x))

for two nearby inputs x and x̂ can be related to the pathwise
change in the output representationF(x̂)−F(x) of the neural
ODE/SDE model.

3.2 Neural Stochastic Differential Equations
We connect with the recent literature on dynamical systems
for neural networks to analyze the robustness of attributions
of neural networks. Dynamical systems such as ordinary and
stochastic differential equations can be used to model residual
networks (ResNets). The evolution of these dynamical
systems represents the process of inference in ResNets [Chen
et al., 2018] where the layers can be viewed as discretization
of the continuous inference dynamics. This continuous
dynamics view of inference and learning has been shown
to improve efficiency as well as analyzability of the deep
learning models [Chang et al., 2017; Chen et al., 2018; Lu et
al., 2018]. In this paper, we exploit this connection between
dynamical systems and neural networks to theoretically
study the robustness of neural network attributions using
results from dynamical systems. We show that neural SDEs
where noise is injected at different layers of the neural
network produce more robust attributions than neural ODEs
in Sec. 3.3.

A building block of a residual neural network [He et
al., 2016] with the residual mapping R(X(i),W (i)) can be
described using the following equation:

X(i+ 1) = X(i) +R(X(i),W (i)) (3)

Here, X(i) is the input to the ith residual network building
block and X(i+1) is the corresponding output that serves as
an input to the next building block. The weights of the neural
network layers in this ResNet building block are denoted by
W (i). In particular, X(0) denoted the input x in this notation
and the final output representation F of the residual neural
network with depth T is denoted by X(T ).

After taking suitable limits, the evolution of the residual
network can be described by the continuous evolution of a
ResNet ordinary differential equation (ODE):

dX(t)

dt
= G(X(t),W (t)) (4)

Here, G(X(t),W (t)) = limδt→0
R(X(t),W (t))

δt and X(0) is
the input to the neural network.

The residual network is extended to a stochastic residual
network by adding a noise term N(i):

X(i+ 1) = X(i) +R(X(i),W (i)) +N(i) (5)

The neural dynamical system corresponding to such
stochastic residual networks is obtained by generalizing to a
stochastic differential equation [Wang et al., 2019; Liu et al.,
2018; Liu et al., 2020; Wang et al., 2019]. Here, the noise is
modeled by weighing a Brownian motion term B(t) with a
suitable diffusion coefficient σ(X(t), t):

dX(t) = G(X(t),W (t)) dt+ σ(X(t), t) dB(t) (6)

We show that the attributions corresponding to such
neural stochastic differential equations are more robust to
small perturbations in the input than those corresponding
to the neural ODEs. We analyze the relative robustness of
attributions for ResNets or neural ODEs and the stochastic
ResNets or neural SDEs in Section 3.3.



3.3 Robustness of Attributions
In a neural ODE or SDE, the input x can be denoted by
X(0) and the output representation F(x) by X(t). Given
a perturbed input x̂, the inferred output representation F(x̂)
of the network may be different from its output representation
F(x) to the original input x.
Theorem 1. Consider a neural ODE with final output
representation F where εx denotes a change in the input
and εF denotes the corresponding change in the output
F . Similarly, for a neural SDE, we denote the final
output representation by F̃ , the change in input by ε̃x, and
the change in the final output representation by ε̃F . The
attribution over the inputs for the neural ODE and the neural
SDE model is denoted by A and Ã, respectively. The total
change in attributions for a neural SDE is smaller than
the total change in attributions for a neural ODE for the
worst-case input x perturbed to x̂, that is,

‖
n∑

k=1

(Ak(x̂)−Ak(x))‖ ≥ ‖
n∑

k=1

(
Ãk(x̂)− Ãk(x)

)
‖

Proof. Given a neural ODE, one can compute a bound on the
influence of a small change in the initial input x on the final
output representation F . X(t) denotes the trajectory starting
from the initial state x. Let ĈF ≥ 0 be a constant bounding
the change in the dynamics, that is, for all t ∈ [0, T ], the
following holds:

‖F(x̂)−F(x)‖ ≤ ‖x̂− x‖ eĈFT = εxe
ĈFT (7)

From the completeness of attributions for the inputs x and x̂,
we know the following:

F(x)−F(xb) =
n∑

k=1

Ak(x) and F(x̂)−F(xb) =
n∑

k=1

Ak(x̂)

(8)
Subtracting attributions for x from those of x̂, we get the
following result:

εF = F(x̂)−F(x) =
n∑

k=1

(Ak(x̂)−Ak(x)) (9)

We can similarly bound the change in attributions for the
neural SDE. In order to compare a neural ODE and SDE for
their relative robustness of attribution, we require them them
to be trained with the same data and similar accuracy, except
for the insertion of noise in SDEs. Due to this insertion of
noise, the dynamics for the training data for neural SDEs will
satisfy the following equation

‖F̃(x̂)− F̃(x)‖ ≤ ‖x̂− x‖ e(ĈF+N)T (10)
where N depends on the injected noise. In order to compare
a neural ODE and a neural SDE, they need to be trained on
the same data and for all data points (including the extreme
points where the above inequality is actually an equality), the
model needs to have the same accuracy. Thus,

εF
εx
≥ ε̃F
ε̃x

(11)

because eNT ≥ 1 since N is positive for any added noise in
training the neural SDE.

4 Experimental Results
Our attribution analysis and model training is performed
on a system with four NVIDIA V100 32GB GPUs
using the ResNet-50, WideResNet-101-2 and ResNeXt-101
models [He et al., 2016] on the ImageNet benchmark. The
neural SDE models are trained by injecting a normalized
noise into each layer of the residual network. We use
the Adam optimizer and the cross-entropy loss in our
experimental studies.

Original
Image

Integrated
Gradient (IG)

IG + Noise
Tunnel

Saliency
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+ SHAP

Noise = 0.1

Noise = 0.25

Noise = 0.5

Noise = 0.75

Original
Model

Figure 4: The top row illustrates the original input image of a
digital clock and its attributions using integrated gradients, IG with
a noise tunnel, saliency map, DeepLIFT and DeepLIFT SHAP. The
visibly best attribution in the top row is obtained by integrated
gradient with a noise tunnel and is indicated by a green box. Our
neural SDE approach with various normalized magnitudes of noise
applied to this attribution method creates a visibly better attribution
in the explanation surrounded by a red box. Similar improvement is
observed in DeepSHAP method that produces an initial reasonable
attribution for the neural ODE. DeepSHAP produces a visibly
sharper explanation for the neural SDE.

We use the Captum tool [Kokhlikyan et al., 2020]
for computing attributions and use a variety of different
attribution methods including integrated gradients,
Smoothgrad, DeepLIFT and DeepLIFT Shap to demonstrate
the generality of our result. The improvement in attributions
for neural SDEs is agnostic to the choice of attribution



method. Further, we investigate qualitative improvement
in the form of smooth robust attributions which are visibly
sharper and well-defined, as well as improvement in more
recently proposed quantitative metrics for attributions such
as the sensitivity metric [Yeh et al., 2019].

4.1 Qualitative Results
We analyzed attributions for 100 images from the ImageNet
validation data set using both Neural ODEs and Neural
SDEs for ResNet-50, WideResNet-101-2 and ResNeXt-101
models, and repeated the analysis 5 times to eliminate
any significant statistical variations in our quantitative
results. Each image has been analyzed using five different
attribution methods: integrated gradients [Sundararajan et
al., 2017], integrated gradients with SmoothGrad [Smilkov
et al., 2017], Saliency Maps [Simonyan et al., 2013],
DeepLIFT [Shrikumar et al., 2017] and DeepLIFT
SHAP [Lundberg and Lee, 2017]. The Adam optimizer
with a learning rate of 0.0001 and 100 epochs is used to
train stochastic residual network models with a normalized
injected noise of magnitudes 0.1, 0.25, 0.5 and 0.75.
Attributions are computed on inferences without any noise
injection using the Captum library [Kokhlikyan et al., 2020].

Figure 5: Neural SDE produces sharper integrated gradients than
Neural ODEs. Left to Right: Original image, neural ODE +
integrated gradients (IG), neural ODE + IG + noise tunnel, neural
SDE + IG + noise tunnel (our approach).

We briefly highlight a few ResNet-50 examples in
this section. Figure 5 shows the attributions obtained
using integrated gradients and integrated gradients with a
traditional noise tunnel [Smilkov et al., 2017] for the input in
the middle two images. The rightmost image is the attribution
obtained using integrated gradients with a noise tunnel on the
Neural SDE model with a normalized noise of 0.5; our neural
SDE approach produces a visually sharper image.

The middle image of Figure 6 visualizes the attributions
obtained by using DeepLIFT SHAP [Lundberg and Lee,
2017; Kokhlikyan et al., 2020] on the neural ODE model.

Figure 6: Neural SDE produces sharper DeepLIFT + SHAP
attributions than those produced by Neural ODEs. Left to Right:
Original image, neural ODE + DeepLIFT + SHAP, neural SDE +
DeepLIFT + SHAP (our approach).
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Figure 7: The DeepLIFT attributions of Neural SDE are visibly
sharper than those produced by Neural ODEs. Left to Right:
Original image, neural ODE + DeepLIFT, neural SDE + DeepLIFT
(our approach).

The rightmost figure is an outcome of applying the same
attribution on a neural SDE model with a normalized noise
of magnitude 0.5. The two planes are more clearly visible in
the neural SDE explanation.

Figure 7 illustrates the difference between the DeepLIFT
attributions computed by neural SDEs and neural ODEs for
the image of a humming bird from the ImageNet data set. The
humming bird is clearly visible in the neural SDE attribution
while the neural ODE attribution is diffused and spread over
the tree and the bird in the image.

Figure 4 shows the impact of using Neural SDEs with
different degrees of injected noise. The following two
observations are relevant here:

1. A noise of small magnitude has an impact on the
visual quality of attributions. However, we have not
quantitatively studied the impact of the magnitude of the
noise on the sensitivity metric [Yeh et al., 2019].

2. The visual quality of the attributions improves as we
increase the noise being injected. However, an increase
in the magnitude of the noise also reduces the accuracy
of the network. This trade-off in accuracy and robust
attribution needs further investigation.

4.2 Quantitative Results
We quantitatively study the robustness of the computed
attributions for both ResNet-50, WideResNet-101-2 and
ResNeXt-101 models using the sensitivity metric [Yeh et al.,
2019] implemented in the Captum library [Kokhlikyan et al.,
2020]. We repeated our sensitivity analysis experiments 5
times on 100 correctly labeled but random images from the
validation set of the ImageNet benchmark. We report the
average values for ResNet-50 in Table 1 below.

Sensitivity
Reference Attribution ODE SDE

[Simonyan et al., 2013] Saliency 0.5952 0.5510
[Sundararajan et al., 2017] IG 0.5788 0.4498
[Shrikumar et al., 2017] DeepLIFT 0.7498 0.6134
[Lundberg and Lee, 2017] DeepSHAP 0.3566 0.3230

Table 1: Neural SDE produces a lower sensitivity metric than neural
ODE for ImageNet benchmark using the ResNet-50 model.

Table 2 shows the average sensitivity metric obtained from
five repetitions of our sensitivity analysis experiments on
the WideResNet-101-2 model using both neural ODEs and



neural SDEs. The sensitivity metrics [Yeh et al., 2019] for
neural SDEs are smaller than those for neural ODEs.

Sensitivity
Reference Attribution ODE SDE

[Simonyan et al., 2013] Saliency 0.5972 0.5480
[Sundararajan et al., 2017] IG 0.5958 0.4940
[Shrikumar et al., 2017] DeepLIFT 0.8226 0.6674
[Lundberg and Lee, 2017] DeepSHAP 0.3332 0.3236

Table 2: The sensitivity metrics for neural SDEs are smaller
than those for neural ODEs. Our experiments used the
WideResNet-101-2 model and the ImageNet benchmark.

Table 3 shows the sensitivity metrics obtained from the
ResNeXt101 model using both neural ODEs and neural
SDEs. Each value for sensitivity metric in the table is
an average computed by performing the sensitivity analysis
experiments 5 times on 100 ImageNet images.

Sensitivity
Reference Attribution ODE SDE

[Simonyan et al., 2013] Saliency 0.6204 0.5570
[Sundararajan et al., 2017] IG 0.6068 0.4976
[Shrikumar et al., 2017] DeepLIFT 0.7972 0.7130
[Lundberg and Lee, 2017] DeepSHAP 0.3692 0.3302

Table 3: Neural SDE produces a lower sensitivity metric than neural
ODE for ImageNet using the ResNeXt101 32x8d model.

This, our experiments demonstrate that the neural SDEs
have lower sensitivity metric than neural ODEs for each of
the attribution methods: saliency maps, integrated gradients,
Deep LIFT, and DeepLIFT SHAP, and this result generalizes
across ResNet-50, WideResNet-101-2 and ResNeXt-101
models. As long as we have a residual neural network
architecture that can be trained as a neural SDE, the
attributions are robust, smoother, and qualitatively sharper.

5 Related Work
Model interpretability and attribution methods.
A number of techniques [Lundberg and Lee, 2017;
Sundararajan et al., 2017; Li and Yu, 2015; Jha et al., 2017;
Jha et al., 2019] for explaining deep neural networks have
recently been proposed in the literature. These methods
either provide a complete logical explanation for the
output of the model or assign quantitative importance
(attributions) to input features for a given model decision.
Many of these methods are based on different analyses
of the gradient of the predictor function with respect to
the input [Simonyan et al., 2013; Selvaraju et al., 2017;
Sundararajan et al., 2017]. A number of attribution methods
have been compared in [Adebayo et al., 2018] and the
sensitivity of these attributions to perturbations in the
input has been studied in [Ghorbani et al., 2019]. These
studies highlight the need for additional methods that can
make attributions of neural networks more robust to input
perturbations. Our observation that neural SDEs produce

more robust attributions with a smaller sensitivity score [Yeh
et al., 2019] is a step in this direction. The challenge of
quantifying the improvement in robustness with the addition
of noise during training of neural SDEs remains open.
Dynamical systems for neural networks. Dynamical
systems models of neural networks have been the subject
of several recent investigations with a particular emphasis
on residual networks [Chang et al., 2017; Weinan, 2017;
Lu et al., 2018; Tabuada and Gharesifard, 2020]. The
theory of partial differential equations has been used to obtain
dynamical system models of ResNets [Chang et al., 2017;
Weinan, 2017; Lu et al., 2018]. Stochastic variants of residual
neural networks have been described using neural stochastic
differential equations [Wang et al., 2019; Liu et al., 2018;
Liu et al., 2020; Wang et al., 2019]. Our main contribution
in this paper is to leverage the connection between dynamical
systems and neural networks to analyze the robustness and
quality of attributions over the input features for a prediction
by a deep learning model.
Connection between SmoothGrad and our work.
SmoothGrad [Smilkov et al., 2017] uses attributions over
multiple noisy variants of an input image to generate visually
sharp attributions. Our qualitative experimental results show
that neural SDEs lead to SmoothGrad attributions that are
visually sharper than SmoothGrad attributions obtained
using neural ODEs. In our experiments, we use the noise
tunnel implementation of SmoothGrad, as implemented in
Captum [Kokhlikyan et al., 2020]. Our approach can be seen
as a generalization of the SmoothGrad [Smilkov et al., 2017]
approach where noise is injected not just in the input but in
all the internal representations of the deep neural network.

6 Conclusions
We make three key observations in this paper. First,
we mathematically analyze the attributions computed on
neural SDEs trained using noise and show that these
are more robust than attributions computed on the
deterministic neural ODEs. Second, we experimentally
show that this improvement in the computed attributions
is agnostic to the choice of path-integral attribution
method. We demonstrate improvement over state-of-the-art
attribution methods including Saliency Maps, DeepLIFT
SHAP and Integrated Gradients (see Fig. 1 through
Fig. 4). Finally, we experimentally illustrate that attributions
computed using neural SDEs have lower sensitivity scores
than those computed using neural ODEs for ResNet-50,
WideResNet-101-2 and ResNeXt-101 models.
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