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Abstract—Quantum algorithms are notoriously hard to design
and require significant human ingenuity and insight. We present
a new methodology called Quantum Automated Synthesizer
(QUASH) that can automatically synthesize quantum circuits
using decision procedures that perform symbolic reasoning for
combinatorial search. Our automated synthesis approach con-
structs finite symbolic abstract models of the quantum gates
automatically and discovers a quantum circuit as a composition
of quantum gates using these symbolic models. Our key insight is
that most current quantum algorithms work on a finite number
of classical inputs, and hence, their correctness proof relies only
on reasoning about a finite set of quantum states that can be
represented using finite symbolic systems. We demonstrate the
potential of our approach by automatically synthesizing four
quantum circuits and re-discovering the Bernstein-Vazirani quan-
tum algorithm using state-of-the-art decision procedures. Our
synthesis approach only requires distinguishing between a finite
set of symbolic quantum states; for example, the synthesis of the
Bernstein-Vazirani quantum algorithm only requires reasoning
about the following qubit states: |0〉, |1〉, −i|0〉, i|1〉, |+〉, |−〉,
eiπ/2|1〉, eiπ/4|1〉 and a remaining symbolic state representing all
other possible quantum states. Our approach leverages decision
procedures and theorem provers to assist in the discovery of
new quantum algorithms and is a step towards the automation
of quantum algorithm design.

I. INTRODUCTION

Quantum computers with 5 to 15 qubits are now available to
the public through the IBM Q platform. IBM’s 53-qubit system
has recently been publicly announced, and a 53-qubit quantum
chip called Sycamore has been introduced by Google. Hence,
the era of the Noisy Intermediate-Scale Quantum (NISQ) sys-
tem with as many as 50 qubits in restricted quantum topologies
is already a reality. However, despite these leaps in our ability
to create NISQ systems, our ability to develop new quantum
algorithms to program these systems to solve new problems is
very limited and dependent on deep human insights and inge-
nuity. A significant barrier in creating new quantum algorithms
is the non-intuitive mapping of a computational problem over
quantum operations; hence, human experts face an inherent
difficulty in reasoning about quantum systems. Our goal is to
develop a design assistant, Quantum Automated Synthesizer
(QUASH), that can bridge this intuition gap using decision
procedures, and synthesize simple quantum algorithms as a
composition of provided quantum gates.

Fig. 1. Synthesized TSG gate using QUASH with gates X,V, V +, SWAP ,
where O1 = A,O2 = (¬A ∧ ¬C) ⊕ ¬B,O3 = ((¬A ∧ ¬C) ⊕ ¬B) ⊕
D,O4 = (((¬A∧¬C)⊕¬B)∧D)⊕ ((A∧B)⊕C) are the outputs of the
circuit. Blue squares denote quantum gates that can be merged into a single
operation and thus have a quantum cost of 1.

Algorithms and machine learning systems have been used
to map known quantum algorithms onto quantum computers
with restricted topologies and noisy qubits to maximize the
performance of quantum circuits and reduce the error rate in
the operation of the quantum circuit. These investigations have
successfully shown the potential of algorithms and machine
learning methods in effectively compiling known quantum
circuits to a specific implementation of a quantum computer.

In this paper, we pursue a different design automation objec-
tive: we seek to automatically discover quantum algorithms or
circuits from the problem specification provided as examples
of the expected input/output pairs. We focus on quantum
circuits that have classical (non-quantum) inputs and outputs,
that is, the problem being solved by the quantum algorithm is
over classical bits. We make the following new contributions:
1) For quantum circuits with classical inputs/outputs, even

though the intermediate states are quantum, we create
an automated synthesis methodology that uses decision
procedures to explore the space of possible quantum circuit
designs using symbolic abstractions of quantum states.
These symbolic states are automatically discovered and
represent one or more quantum states.

2) We automatically synthesize four different quantum cir-
cuits with minimum quantum cost from their input/output
specifications using decision procedures. We also automati-
cally re-discover the Bernstein-Vazirani algorithm or circuit
using a symbolic abstraction of only 9 symbolic states:
one for each of the qubits |0〉, |1〉, −i|0〉, i|1〉, |+〉, |−〉,
eiπ/2|1〉, eiπ/4|1〉, and a symbolic state representing all
other possible quantum states.
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II. RELATED WORK

A. Quantum Computation and Reasoning
Optimization methods, including decision procedures, have

been used to compile high-level quantum programs onto target
quantum computing platforms with the goal of improving
error resiliency against variability [1] and noise [2]. The
mapping of quantum algorithms to quantum computers that
respect the topological constraints imposed by specific quan-
tum computers has also been investigated using automated
reasoning methods [3], [4]. Formal methods and other logic-
based symbolic reasoning systems have been used to reason
about the correctness of quantum programs and quantum
computing systems [5]–[7].

However, our approach automatically synthesizes circuits
from input/output specifications by reasoning over symbolic
abstractions of quantum states using decision procedures.
We are also the first to automatically re-discover a non-
trivial quantum circuit, such as the Bernstein-Vazirani quantum
algorithm, using a symbolic abstraction of 9 symbolic states
from examples of input/output pairs.

B. Automated Synthesis
The use of symbolic reasoning approaches to synthesis dates

back to Church [8]. A rich theory of symbolic reasoning [9],
[10] has developed since then, ranging from fully-automated
reasoning over restricted fragments of logic [11]–[13] to proof
assistants [14]–[16] that can help humans reason over higher-
order logic. Decision procedures [17]–[19] have emerged as
an effective symbolic reasoning technique that can automate
combinatorial search and find models over logical fragments
such as those including bitvectors (array of Boolean bits),
abstract uninterpreted functions and arithmetic operations. In
this paper, we use a state-of-the-art reasoning systems Z3 [20]
to implement the QUASH quantum automated synthesizer.

The use of symbolic reasoning and decision procedures
in synthesis of traditional hardware and software has also
received significant attention. Synthesis of hardware circuits
has been explored in literature [21]–[23] and has been adopted
in the industry [24], [25], particularly for design optimization.
The use of combinatorial methods in automated synthesis of
software has also been recently explored [26], [27] to generate
non-intuitive code snippets.

However, our approach is the first to apply automated
synthesis using symbolic abstractions to quantum algorithms.
Even if the inputs and outputs of quantum algorithms are clas-
sical bits, the intermediate states can be qubits. The decision
procedures cannot reason directly over qubits or vectors with
irrational or complex coefficients. Even reasoning over integer
arithmetic with multiplication (nonlinearity) is known to be
undecidable [28], [29].

We exploit the observation that the interesting quantum
states in a typical quantum circuit are finitely enumerable, and
we can symbolically abstract all quantum states to create a
finite set of symbols where each state represents one or more
qubits. QUASH uses this insight to automatically synthesize
quantum circuits from input/output specifications.

III. QUANTUM AUTOMATED SYNTHESIS (QUASH) USING
SYMBOLIC REASONING

Quantum systems perform linear reversible transformations
on quantum states composed of qubits, or quantum bits.
In principle, a decision procedure should be able to reason
directly on this algebraic representation of a quantum circuit
and search for a quantum circuit capable of performing a
given operation. However, this direct approach is not feasible
as existing combinatorial search algorithms cannot search
over high-dimensional spaces with irrational/complex values.
Such a direct search for the correct quantum algorithm is
prohibitively expensive because of the interaction between
the search for the correct overall topology of the network
representing the quantum circuit and the individual correct
quantum gates to be placed in this topology.

A. Symbolic Representation of Quantum Gates

Our approach towards developing the Quantum Automated
Synthesizer (QUASH) adopts a symbolic approach towards
reasoning about quantum states and quantum gates. Each
quantum state is provided a symbol; for example, the quantum
state |0〉 is represented by the symbol α and |1〉 is represented
by the symbol β. Then, for example, we can represent the
operation of the X quantum gate on these two inputs by
adopting the following symbolic rules:

1) X(α) = β
2) X(β) = α
3) X(⊥) = ⊥, read as bottom (of a lattice).

The third rule essentially says that the X quantum gate maps
any state that is not α or β to some state that is not known to
be either α or β. This symbolic abstract model of the X gate
is not enough to represent its behavior on all inputs. But, as
we will demonstrate, it is enough to symbolically represent the
execution of quantum gates on a few quantum states for each
qubit in order to automatically synthesize interesting quantum
algorithms like the Bernstein-Vazirani quantum algorithm.

In our approach, we build the symbolic model of quantum
gates automatically by focusing on inputs |0〉, |1〉, and then
expanding the inputs to include the outputs of the quantum
gates on these inputs. Consider the Hadamard H gate. We
first build a Symbolic Input/Output (I/O) Model for the H
gate using the inputs |0〉 and |1〉 represented symbolically as
α and β:

H gate Inputs

α ≡ |0〉 β ≡ |1〉 ⊥

Output ⊥ ⊥ ⊥

It is clear from this table that this symbolic model of the
Hadamard H gate is overly abstract and not useful for analysis
as all its outputs are unknown, represented symbolically by ⊥.
This occured as we have no symbolic representation for the
output of the Hadamard gate on |0〉 i.e. for |+〉 = |0〉+|1〉√

2
.

Hence, we create a new symbol γ for this quantum state |+〉.
For similar reasons, we also create a new symbol state for the



quantum state |−〉 = |0〉−|1〉√
2

. Then, we extend the Symbolic
I/O Model for the Hadamard H gate to the following:

H gate Inputs

α ≡ |0〉 β ≡ |1〉 γ ≡ |+〉 δ ≡ |−〉 ⊥

Output γ δ α β ⊥

We could have continued creating a larger symbolic In-
put/output (I/O) Model for the Hadamard quantum gate to
build a better abstraction of its behavior. Our key observation
in this paper is that a finite symbolic I/O abstraction is
sufficient to discover many quantum circuits; for example, an
abstraction involving only 9 symbols is sufficient for us to
re-discover the Bernstein-Vazirani algorithm using automated
synthesis. The symbolic I/O abstractions are automatically
constructed from the definition of the quantum gates and the
quantum input states that we chose to represent using the
symbolic variables.

B. Symbolic Search in QUASH

The symbolic search procedure in QUASH defines a search
space of circuits where the desired quantum computation can
be performed by at most n gates from a given list of m known
quantum gate types. For example, for one execution of our
symbolic search for the TSG circuit in Figure 1, we required
that we only use the following m = 4 gate types: X , V , V +,
and SWAP . Further, we required that the circuit contain no
more than a total of 11 quantum gates. A variety of other
designs can be obtained by varying these parameters.

Fig. 2. Illustration of the symbolic search using decision procedures. Each
quantum gate Q corresponds to one of the component quantum gates G in
the library. The input to each quantum gate comes from the output of some
other quantum gate or an input to the quantum circuit itself.

The search procedure begins by encoding the desired cir-
cuit as a component-based design problem. For the sake of
simplicity, we discuss quantum gates with only one input.
The complete quantum circuit is composed of n component
quantum gates: Q1, Q2, . . .Qn. Each gate can be one of the
m different types of quantum gates G1, G2 . . . Gm, i.e. the
output of each component must agree with one of the gates
on all inputs. Formally, we have:

∀x,
(
(Qi(x) = G1(x)) or . . . or (Qi(x) = Gm(x))

)
That is, for all values of the input x, the output of the quantum
gate Qi on this input agrees with the output of one the gates
in our component library G1, G2 . . . Gm of m gates.

The next set of logical specifications for the symbolic rea-
soning decision procedure determines the connections between
the quantum gates Q1, Q2 . . . Qn. For each input port inpQi

of the quantum gate Qi, its value must be derived from either
one of the inputs to the quantum circuit I1, . . . , Ik or one of
the outputs outQj

of another quantum gate Qj . Formally,

∀I,
(
(inpQi

= outQ1
(I)) or . . . or (inpQi

= outQn
(I))

or (inpQi = I1) or . . . or (inpQi = Ik)
)

Informally, the input to a quantum gate Qi is either one of
the inputs to the circuit I1, . . . , Ik or the result of one of the
other quantum gates Qj .

IV. RESULTS: SYNTHESIZED QUANTUM CIRCUITS

We study the performance of the QUASH automatic quan-
tum synthesizer of four quantum circuits: TSG [30], HNG
[31], PFAG [32], and MKG [33]. These quantum circuits
are important components for reversible logic and the imple-
mentation of more complex quantum multiplier circuits and
quantum ALUs [34], [35] as they enable the simultaneous
computation of various logic functions, including full addition.
Our approach is agnostic to the choice of these benchmarks
and could be readily applied to other quantum circuits whose
input/output specifications are available.

We use the proposed QUASH approach to generate state-
of-the-art designs for the TSG [30], HNG [31], PFAG [32],
and MKG [33] in terms of minimizing the quantum cost.

Quantum Cost

Circuit QUASH [36] [32]

HNG (Figure 3) 6 6 -
PFAG (Figure 4) 6 - 8
TSG (Figure 1) 9 14 -
MKG (Figure 5) 10 13 -

TABLE I
QUANTUM COST OF VARIOUS ARITHMETIC GATES SYNTHESIZED USING

QUASH AND OTHER APPROACHES.

Our experiments were performed on a system with 32 3.3
GHz Intel cores and 1 TB of memory. The results of our
QUASH approach can be seen in Table I and in Figures 3, 4, 1
and 5. Here, quantum cost is the number of 2-qubit gates used
in the synthesized circuit. However, it is worth noting that
when multiple 2-qubit gates are used in sequence on the same
qubits, this has unit cost. This follows from the observation
that applying a sequence of unitary transformations on the
same qubits is itself a unitary operation and can thus be
represented by some unitary matrix on said qubits. Such cases
are demarcated in both Figures 1 and 5 by dashed blue squares.

Our circuits are minimal using this circuit topology and
using these quantum gates. We show this by asking QUASH
to obtain quantum circuits with fewer gates and the decision
procedure produces an unsatisfiable response. For example, the
circuit in Figure 3 is shown to be optimal as QUASH takes
115.51 seconds to produce an unsatisfiable response when
asked to produce a circuit with no more than 5 quantum gates.



Performance

Circuit Time (sec) Memory (MB)

HNG (Figure 3) 224.50 300.536
PFAG (Figure 4) 193.92 297.272
TSG (Figure 1) 144,326.49 364.255
MKG (Figure 5) 159,473.78 387.840

TABLE II
QUASH PERFORMANCE FOR SUCCESSFUL AUTOMATED SYNTHESIS.

Fig. 3. Our automatically synthesized HNG circuit using our QUASH
approach with gates X,V, V +. Here, A,B,C and D are the inputs, and
O1 = A,O2 = B,O3 = A⊕B⊕C,O4 = ((A⊕B)∧C)⊕((A∧B)⊕D)
are the outputs of the circuit.

Fig. 4. Synthesized PFAG gate using QUASH with gates X,V, V +, where
O1 = A,O2 = A⊕B,O3 = A⊕B ⊕C,O4 = ((A⊕B) ∧ C)⊕ ((A ∧
B)⊕D).

Fig. 5. Synthesized MKG gate using QUASH with gates X,V, V +, SWAP ,
where O1 = A,O2 = C,O3 = ((¬A ∧ ¬D)⊕ ¬B)⊕ C,O4 = (((¬A ∧
¬D)⊕ ¬B) ∧ C)⊕ ((A ∧B)⊕D).

A. Synthesis of Bernstein-Vazirani Circuit

We applied our algorithmic synthesis approach towards
automatically re-discovering the Bernstein-Vazirani quantum
algorithm. We selected an over-approximation of the set of
quantum gates that are known to be sufficient to implement
the Bernstein-Vazirani quantum algorithm: (i) the Hadamard
H gate, (ii) the T gate, (iii) the S gate, (iv) the X gate, (v)
the Y gate, (vi) the Z gate, (vii) the phase kickback Uf sub-
circuit, and (viii) the identity I gate.

We constructed a symbolic I/O model for each of the
quantum gates and implemented our component-based search
using these symbolic models. The X , Y and Z gates are
described using a symbolic state α representing the quantum
state |0〉, another symbolic state β representing the quantum

state |1〉 and a symbolic state ⊥ representing those quantum
states that are not captured by any other symbolic state.

X gate Inputs

α ≡ |0〉 β ≡ |1〉 ⊥
Output β α ⊥

Z gate Inputs

α β ⊥
Output β ⊥ ⊥

The symbolic I/O model of the Hadamard H gate is refined
as follows:

H gate Inputs

α ≡ |0〉 β ≡ |1〉 γ ≡ |+〉 δ ≡ |−〉 ⊥
Output γ δ α β ⊥

Inputs

ε ≡ −i|0〉 ζ ≡ i|1〉 η ≡ eiπ/2|1〉 θ ≡ eiπ/4|1〉
Output ⊥ ⊥ ⊥ ⊥

The phase kickback circuit Usi has a symbolic I/O model
that maps γ ≡ |+〉 to γ if the particular si = 1; otherwise, it
maps the input symbolic state γ ≡ |+〉 to the symbolic state
δ ≡ |−〉. In the interest of brevity, we omit the descriptions
of the symbolic I/O models of the other quantum gates.
But, it should be clear that these symbolic representations
can be computed automatically from the definitions of the
quantum gates. An example synthesized quantum circuit for
this problem can be seen in Figure 6.

Fig. 6. Synthesized Bernstein-Vazirani quantum circuit.

V. CONCLUSIONS AND FUTURE WORK

This paper is a first step towards the automatic discovery
of quantum algorithms using symbolic abstractions and de-
cision procedures. Our success in automatically synthesizing
four optimal quantum circuits (see Table I as well as Fig-
ures 3, 4, 1 and 5) and an implementation of the Bernstein-
Vazirani quantum algorithm relies on a novel symbolic abstract
modeling of quantum gates. Symbolic abstractions of quantum
gates provide an efficient mapping from continuous high-
dimensional tensor representations of quantum circuits to
symbolic representations that can be readily interpreted by
decision procedures. For future work, we are investigating
the use of circuit optimizations to reduce the runtime of the
synthesis procedure. Indeed, this would allow the QUASH to
return correct sub-optimal circuit designs more quickly such
that optimization techniques can then be employed to yield
optimal designs.
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