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Abstract. We propose a novel passive learning approach, TeLEx , to
infer signal temporal logic formulas that characterize the behavior of a
dynamical system using only observed signal traces of the system. The
approach requires two inputs: a set of observed traces and a template
Signal Temporal Logic (STL) formula. The unknown parameters in the
template can include time-bounds of the temporal operators, as well as
the thresholds in the inequality predicates. TeLEx finds the value of the
unknown parameters such that the synthesized STL property is satisfied
by all the provided traces and it is tight. This requirement of tightness is
essential to generating interesting properties when only positive exam-
ples are provided and there is no option to actively query the dynamical
system to discover the boundaries of legal behavior. We propose a novel
quantitative semantics for satisfaction of STL properties which enables
TeLEx to learn tight STL properties without multidimensional optimiza-
tion. The proposed new metric is also smooth. This is critical to enable
use of gradient-based numerical optimization engines and it produces a
30X-100X speed-up with respect to the state-of-art gradient-free opti-
mization. The approach is implemented in a publicly available tool.

1 Introduction

Signal Temporal Logic (STL) [26] is a discrete linear time temporal logic used
to reason about the future evolution of a continuous time behaviour. Generally,
this formalism is useful in describing the behaviours of trajectories of differential
equations or hybrid models. Several approaches [30, 31, 20, 21, 14, 25] have been
recently proposed to automatically design systems and controllers to satisfy given
temporal logic specifications. But practical systems are still often created as an
assembly of components - some of which are manually designed. Further, many
practical systems also include the physical plant, and the overall property of such
systems are not known a-priori. Consequently, specification mining has emerged
as an effective approach to create abstractions of monitored behavior to better
understand complex systems, particularly in autonomy and robotics.
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Existing approaches to learning STL properties fall into two categories. The
approaches in the first category are classifier-learning techniques which rely on
the presence of both positive and negative examples to learn STL formula as a
classifier. The approaches in the second category are active-learning approaches
that require the capability to experiment with the system to actively try falsify-
ing candidate STL properties in order to obtain counterexamples. In this paper,
we address the problem of learning STL properties where negative examples are
not provided and it is not possible to actively experiment with the system in a
safe manner. For example, learning properties of a vehicle-deployed autonomous
driving system must rely on only positive examples. We neither have easy access
to negative example trajectories that the system will never execute nor do have
an easy way to design safe experiments for falsifying properties.

We propose a novel technique, TeLEx that addresses this challenge of data-
driven learning of STL formulae from just positive example trajectories. An ini-
tial learning bias is provided to TeLEx as a template formula. TeLEx is restricted
to learning parameters of the provided template STL formula and not its struc-
ture. TeLEx does not have access to either negative examples or the model of the
system for falsification. Thus, the boundaries of legal behaviour are not directly
available. It has to be inferred just from positive examples. The challenge is to
avoid over-generalization in absence of negative examples or counterexamples
obtained from active falsification. TeLEx addresses this research gap of mining
temporal specifications of systems where active experimentation is not possible
and failing traces (negative examples) are not available.

TeLEx uses a novel quantitative metric that measures the tightness of sat-
isfiability of STL formulas over the traces. This metric uses smooth functions
to represent predicates and temporal operators. This keeps the metric differen-
tiable, which would not be possible by just taking the absolute value of standard
robustness-metric or directly using the qualitative metric. While sigmoid and
exponential-like functions are often used in fields such as deep-learning which
rely on numerical-optimization, TeLEx is the first to use these to smoothly repre-
sent tight-satisfiability of STL formulas. The smoothness of the proposed metric
allows the effective use of gradient-based numerical optimization techniques.
TeLEx can be used with a number of different numerical optimization back-ends
to synthesize parameters that minimize the new metric over positive examples,
and thus, learn a tight STL formula consistent with all the traces.

2 Preliminaries

We present some preliminary concepts and definitions used in our work.

Definition 1. An interval I is a convex subset of R. A singular interval [a, a]
contains exactly one point and ∅ denotes empty interval. Let I = [a, b], I1 =
[a1, b1], and I2 = [a2, b2] be three closed intervals. Then,
1. −I = [−b,−a] 2. c+I = [c+a, c+b] 3. I1⊕I2 = [a1+a2, b1+b2]
4. min(I1, I2) = [min(a1, a2),min(b1, b2)]
5. I1 ∩ I2 = [max(a1, a2),min(b1, b2)] if max(a1, a2) ≤ min(b1, b2) and ∅ o.w.
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These definitions for various operations are naturally extended to closed,
open-closed, and closed-open intervals.

Definition 2. A time domain ST is a finite or infinite set of time instants such
that ST ⊆ R≥0 with 0 ∈ ST . A signal or signal-trace τ is a function from ST
to a domain X ⊆ R. We assume the domain of all signals to be R to simplify
notation. We also refer to signal-trace as simply trace or trajectory.

Monitors used in cyberphysical systems, as well as simulation frameworks,
typically provide signal values at discrete time instants due to discrete sampling,
or due to limitations of numerical integration techniques. The actual signal can
be reconstructed from discrete-time samples using some form of interpolation. In
this paper, we assume constant interpolation to reconstruct the signal τ(t), that
is, given a sequence of time-value pairs (t0, x0), . . . , (tn, xn), for all t ∈ [t0, tn),
we define τ(t) = xi if t ∈ [ti, ti+1), and τ(tn) = xn. The signal temporal logic
(STL) formula are used to describe properties of signals. The syntax of STL is
given as follows:

Definition 3. A formula φ ∈ F of bounded-time STL is defined as follows:

φ := ⊥ | > | µ | ¬φ | φ ∨ φ | φ ∧ φ | φU[t1,t2]φ | F[t1,t2]φ | G[t1,t2]φ

where 0 ≤ t1 < t2 <∞ and the atomic predicates µ : Rn → {>,⊥} are inequali-
ties on a set X of n signals, that is, µ(X) is of the form g(X) ≥ α, where α ∈ R
and g : Rn → R is a continuous function.

The eventually F and globally G operators are shorthands for >U[t1,t2]φ
and ¬(>U[t1,t2]¬φ) respectively. We keep them, nonetheless, to aid clarity when
presenting the different ways of assigning semantics to these operators. We refer
to [26, 10], and the survey in [27], for detailed discussion on STL. We briefly
summarize its qualitative semantics in Definition 4. Let T denote the set of all
signal-traces.

Definition 4. The qualitative semantics of STL formulas is given by the func-
tion ψ : F × T × ST → Bool that maps an STL formula φ, a given signal-trace
τ ∈ T , and a time t ∈ ST to a Boolean value (True >, or False ⊥) such that

– ψ(>, τ, t) = >
– ψ(µ, τ, t) = µ(τ(t))
– ψ(¬φ, τ, t) = ¬ψ(φ, τ, t)
– ψ(φ1 ∨ φ2, τ, t) = ψ(φ1, τ, t) ∨ ψ(φ2, τ, t))
– ψ(φ1 ∧ φ2, τ, t) = ψ(φ1, τ, t) ∧ ψ(φ2, τ, t))
– ψ(F[t1,t2]φ, τ, t) = ∃t′ ∈ [t+ t1, t+ t2] ψ(φ, τ, t′)
– ψ(G[t1,t2]φ, τ, t) = ∀t′ ∈ [t+ t1, t+ t2] ψ(φ, τ, t′)
– ψ(φ1U[t1,t2]φ2, τ, t) = ∃t′ ∈ [t+t1, t+t2] (ψ(φ2, τ, t

′) ∧ ∀t′′ ∈ [t, t′) ψ(φ1, τ, t
′′))

Motivated by the need to define how robustly a trace satisfies a formula,
formulas in STL were given a quantitative semantics, where formulas are inter-
preted over numbers such that positive numbers indicate that the formula is
True, and negative numbers indicate falsehood. We summarize the quantitative
semantics (robustness metric) from [13, 11] below.
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Definition 5. The robustness metric ρ maps an STL formula φ ∈ F , a signal
trace τ ∈ T , and a time t ∈ ST to a real value, that is, ρ : F × T × ST →
R ∪ {∞,−∞} such that:

– ρ(>, τ, t) = +∞
– ρ(µ, τ, t) = g(τ(t))− α where µ(X) is g(X) ≥ α
– ρ(¬φ, τ, t) = −ρ(φ, τ, t)
– ρ(φ1 ∨ φ2, τ, t) = max(ρ(φ1, τ, t), ρ(φ2, τ, t))
– ρ(F[t1,t2]φ, τ, t) = sup

t′∈[t+t1,t+t2]
ρ(φ, τ, t′)

– ρ(G[t1,t2]φ, τ, t) = inf
t′∈[t+t1,t+t2]

ρ(φ, τ, t′)

– ρ(φ1U[t1,t2]φ2, τ, t) = sup
t′∈[t+t1,t+t2]

(min(ρ(φ2, τ, t
′), inf

t′′∈[t,t′)
ρ(φ1, τ, t

′′)))

A STL formula φ is satisfied by a trace τ at time t, that is, ψ(φ, τ, t) = > if
and only if ρ(φ, τ, t) ≥ 0. Intuitively, ρ quantifies the degree of satisfiability. This
has motivated its use in learning STL formulae for specification mining [11, 23,
7, 18], diagnosis [24], falsification [6, 1, 2], and system synthesis [9, 4, 31].

3 Related Work

In this section, we summarize related work on learning STL formulae and con-
trast them to the approach presented in this paper. We categorize related work
into three groups: learning STL formula, quantitative metrics for temporal logic
and learning concepts from positive examples.

Learning STL formula: Existing techniques for learning STL formulae can be
broadly classified into active and passive methods. Active STL learning methods
rely on availability of a simulation model on which candidate temporal properties
can be falsified [6, 1, 33, 3]. This generates counterexamples. Since these models
are often complex executable models, black-box optimization techniques such as
simulated annealing are used in falsification of candidate temporal logic proper-
ties. If the falsification succeeds, the incorrect parameter values are eliminated
and the obtained negative example is used in the next iteration of inferring
new candidate parameters values of the temporal logic property. We address
a different problem of learning signal temporal logic formula when the simula-
tion model is not available. Further, instead of using gradient-free optimization
methods such as simulated annealing, Monte Carlo and ant colony optimization
to falsify models, we use more scalable gradient-based numerical optimization
methods to infer tightest STL property consistent with a given set of traces.
Gradient-based methods for falsification [2] have also been proposed recently to
exploit the differentiable nature of simulation models but our approach does not
have access to a simulation model. Instead, we define a smooth tightness metric
for satisfiability of STL properties, and use gradient-based methods to search
over the parameter space of STL formulae.
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Passive data driven approaches for learning STL formula from positive and
negative example traces have also been proposed in literature. Learning STL
formula is reduced to a two class supervised classification problem [24, 7, 15]
that is solved using a mixture of discrete and continuous optimization using
decisions trees and simulated annealing. A model based approach that relies on
statistical induction of models before learning STL formulae is presented in [7].
In contrast, TeLEx addresses the problem of passive learning of STL formulae
in presence of only positive examples.

Metrics for STL Satisfiability: Signal temporal logic was introduced [26, 11]
within the context of monitoring temporal properties of signals. It is possible to
quantify the degree of satisfiability of an STL property on a signal trace, thus go-
ing beyond the Boolean interpretation. Robustness metric was proposed [13, 11]
to provide such a quantitative metric, as described in Section 2. Intuitively, this
metric captures the closest distance between the signal trace and the boundary
of set of signals satisfying the STL property. This is the worst-case measure of
degree of satisfiability. More recently, an average robustness metric has also been
proposed [25] in the context of task and motion planning application where the
min (inf) operator in the metric definition for globally properties is replaced by
an averaging operator. This allows more efficient encoding to linear programs for
certain planning problems. These metrics are monotonic, that is, the measure is
higher for formulas that are more robustly satisfiable.

If we use robustness metric to learn STL properties from a set of positive
example traces, then we would learn very weak properties. This is because a
weaker STL property would have a higher robustness value for any given set of
positive example signal traces. For example, even if G(x > 0) holds for a given set
of traces, the formula G(x > −100) holds more robustly, and would be preferred
if we optimized for the standard robustness metric. Hence, in this paper, we
define a new metric that captures tight satisfiability of an STL property over
positive example traces.

A possible approach for finding a tight formula would be to seek a formula
that minimizes the absolute-value of the robustness-metric. However, this is not
ideal because the absolute-value function is non-differentiable at the optimum
and hence, optimizing such a metric would be very challenging. Our proposed
novel metric uses smooth functions, such as sigmoid and exponentials, to model
tight-satisfiability while still retaining differentiability to aid optimization.

Learning from Positive Examples: Learning from positive examples has
been investigated extensively in machine learning. Gold et al [16] showed that
even learning regular languages from a class with at least one infinite language
is not possible with only positive examples in a deterministic setting. Horin-
ing [17] considered the case of stochastic context-free grammars and assumed
that the positive examples were generated by sampling from the unknown gram-
mar according to the probabilities assigned to the productions. He proved that
such positive examples could be used to converge to the correct grammar in
the limit with probability one. Angluin [5] generalized these results to identify-
ing any unknown formal language in the limit with probability one as long as
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positive examples are drawn according to an associated probability distribution.
Apart from the literature on language learning, Muggleton [28] showed that logic
programs are learnable with arbitrarily low expected error just from positive ex-
amples within a Bayesian framework. Valiant [32] showed monomials and k-CNF
formulas are Probably Approximately Correct (PAC) learnable using only pos-
itive examples. While learning from positive examples and its limitations have
been studied for other concept classes [22], our approach is the first to consider
learning STL properties from positive examples.

4 Learning STL from Positive Examples

Before we present the proposed approach for learning STL properties from just
positive examples, we present a simple motivating example.

Illustrative Example: Let us consider an autonomous vehicle system where
the steering angle ang and speed spd are being observed. Each element of the ob-
served trace is a tuple of the form (timestamp, ang, spd). We would like to learn
an STL property with the template: φ = |ang| ≥ 0.2 ⇒ F[0,6]spd ≤ α, which
intuitively means that we would like to learn the minimum speed α reached
within 6 seconds of initiating a turn. Let us consider a timestamped signal trace:
τ = (0, 0.1, 15), (2, 0.2, 14), (4, 0.3, 12), (6, 0.35, 10), (8, 0.4, 8), . . .. For this trace,
we notice that (|ang| ≥ 0.2 ⇒ F[0,6]spd ≤ 8) would tightly fit the data. But if
we used the robustness metric for optimization, increasing the value of α would
be preferred since it increases the robustness value. The robustness metric value
for the instantiated template φ and the trajectory τ is ρ(φ, τ, 0) = 0 when α = 8,
ρ(φ, τ, 0) = 2 when α = 10, ρ(φ, τ, 0) = 992 when α = 1000, and so on. A weak
property like |ang| ≥ 0.2 ⇒ F[0,6]spd ≤ 1000 has higher robustness score than
the tight property |ang| ≥ 0.2 ⇒ F[0,6]spd ≤ 8 but clearly, the latter is a more
fitting description of the observed behavior.

Problem Definition: We next present some definitions essential to formulating
the problem of learning STL properties from positive examples.

Definition 6. A template STL formula φ(p1, p2, . . . , pk) with k unknown pa-
rameters is a negation-free bounded-time signal temporal logic formula with the
syntax in Definition 3 where some of the time bounds of temporal operators
and thresholds of atomic predicates are not constants but instead, free parame-
ters. The parameters are optionally associated with interval constraints providing
lower and upper bounds; that is, li ≤ pi ≤ ui for 1 ≤ i ≤ k where li, ui are con-
stant bounds.

Note that we assume templates are negation free. If there are no U operator
in a formula φ, then the negation in ¬φ can be pushed inside a formula until we
are only left with negated atomic predictes. Negated predicates can themselves
be rewritten in negation-free form.

We say that an STL formula φ(v1, v2, . . . , vk) completes the STL template if
the values vi ∈ R for parameters pi satisfy all the bound constraints on pi.
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Definition 7. Given a temporal logic property φ(v1, v2, . . . , vk) that completes
a template φ(p1, p2, . . . , pk), we define the ε-neighborhood of φ(v1, v2, . . . , vk) as
Nε(φ(v1, v2, . . . , vk)) = {φ(v′1, v

′
2, . . . , v

′
k) s.t. |vi − v′i| ≤ ε for 1 ≤ i ≤ k}.

We now formally define the problem of learning signal temporal logic formula.
The second condition in Definition 8 ensures ε-tightness while the first condition
ensures that the STL formula is consistent with positive examples.

Definition 8. Given a set of traces T and template STL φ(p1, p2, . . . , pk), the
problem of learning ε-tight STL formula is to learn the values of the parameters,
pi = v∗i , such that

– the STL formula φ(v∗1 , v
∗
2 , . . . , v

∗
k) holds over all traces in T , that is, ∀τ ∈

T : τ |= φ(v∗1 , v
∗
2 , . . . , v

∗
k) and

– there exists some φ(v1, v2, . . . , vk) ∈ Nε(φ(v∗1 , v
∗
2 , . . . , v

∗
k)) that does not hold

over at least one trace in T ; that is, ∃τ ∈ T : τ 6|= φ(v1, v2, . . . , vk)

We have used the notation τ |= φ here to denote ψ(φ, τ, 0) = >, where ψ is
the qualitative semantics presented in Definition 4. We can solve the problem
of learning ε-tight STL formulas by formulating the following constrained multi-
objective optimization problem where minimization is done with respect to free
parameters p1, . . . , pk.

minimize {|ε1|, |ε2|, . . . , |εk|} s.t.
ε1 = p1 − p′1, ε2 = p2 − p′2, . . . , εk = pk − p′k

∀τ ∈ T τ |= φ(p1, p2, . . . , pk), ∃τ ′ ∈ T τ ′ 6|= φ(p′1, p
′
2, . . . , p

′
k)

We can check if the solution of the above problem solves our ε-tight learning
problem by checking if max{|ε1|, . . . , |εk|} is less than the desired ε (or, we could
alternatively change the above optimization problem to a min-max problem).
However, the above optimization problem is difficult to solve in practice for
two reason - first, it requires multi-objective optimization where the number of
objectives, k, grows with the number of parameters in the signal temporal logic
formula. Further, the constraints require checking satisfiability of the bounded-
time STL formula over finite traces which is itself an NP hard problem.

The robustness metric for quantitative satisfiability of STL formula allows
us to replace satisfiability checking with nonlinear constraints in the above op-
timization problem.

minimize {|ε1|, |ε2|, . . . , |εk|} s.t.
ε1 = p1 − p′1, ε2 = p2 − p′2, . . . , εk = pk − p′k

∀τ ∈ T ρ(φ(p1, p2, . . . , pk), τ, 0) ≥ 0, ∃τ ′ ∈ T ρ(φ(p′1, p
′
2, . . . , p

′
k), τ ′, 0) < 0

Next, we notice that the robustness metric is continuous in the parameters pi
corresponding to inequality thresholds and time-bounds and hence, one could
expect that we will obtain a reasonable solution for the above problem by solving
the following simpler scalar optimization problem :

minimizep1,p2,...,pk min
τ∈T
|ρ(φ(p1, p2, . . . , pk), τ, 0)|
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Fig. 1: (a) The absolute value of robustness metric reaches 0 at α = 8. It is close
to 0 even at 7.99 even though the temporal property corresponding to α = 7.99
is violated by the trace. (b) The ideal metric should be negative when α < 8 and
jump to ∞ when α = 8 and drop down to 0 when α > 8. (c) A metric which is
negative for α < 8, reaches its maxima between 8 and 8 + ε and then drops to 0.

There are two problems with this approach of solving the tight-STL learning
problem using the above optimization problem. This optimization problem uses
the absolute value of the robustness metric. This metric is generally not differ-
entiable at ρ(φ(p1, p2, . . . , pk)) = 0. Further, if we get an ε-approximate solution
for the above optimization problem, it no longer guarantees that all traces will
satisfy the instantiated template φ. This is because the absolute value can be a
small positive number even when the actual value is a small negative number.
In Figure 1, we use the example at the beginning of the section to illustrate the
problem. Figure 1(b) illustrates an ideal metric, because it achieves its maximum
at the the boundary of satisfiability and unsatisfiability. Maximizing this metric
would yield tight STL property but optimizing such a discontinuous function is
difficult. Figure 1(c) illustrates a more practical incarnation of the ideal metric,
which is not discontinuous but still useful to learn ε tight STL property. Our
main contribution is designing such a metric.
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Fig. 2: Tightness metric θ for predicate

We begin by first defining a tightness
metric for predicates. We would like
the metric to achieve its maximum
value at the boundary in order to dis-
cover tight STL properties. For a pred-
icate µ(x) := g(x) ≥ α, recall that
the robustness metric is ρ(µ, τ, t) =
g(τ(t))−α = r. We would like to define
a tightness metric θ(µ, τ, t) such that it
is similar to Figure 1(c), and hence we
define it to be

1

r + e−βr
− e−r
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where β ≥ 1 is an adjustable parame-
ter. This function is plotted in Figure 2 and it approaches the ideal function in
Figure 1(b) as β increases albeit at the cost of numerical stability during opti-
mization. This function is smooth (its derivative is defined and also continuous),
and hence, is amenable to gradient-based numerical optimization techniques.
Finding an ε-tight value of α reduces to maximizing θ with appropriate choice
of β - lower values of ε require higher values of β.
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(a) Globally Operator: θ(G[t2−t1]>)
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(b) Eventually Operator: θ(F[t2−t1]>)

Fig. 3: Tightness metric θ

Apart from the predicates, the other difficult cases for defining the tightness
metric (θ) happen to be the temporal operators. The requirement here is that the
metric θ should be defined such that it prefers longer time intervals for globally
operator and shorter for eventually operator as illustrated in Figure 3.

We next formally define the tight quantitative semantics over negation-free
STL properties and show how it can be used to formulate the problem of learning
consistent and tight STL property as a numerical optimization problem over a
single (scalar) cost metric. If the original formula has negation, it is pushed
inwards through Boolean combinations, F and G temporal operations, and the
inequality in predicate is flipped. Negation can also be pushed inwards through
discrete bounded time U operator via case-splitting. Further, since we deal with
continuous signals, we consider only non-strict inequalities as predicates and
relax strict inequalities if needed.

Definition 9. The tightness metric θ : F × T × ST 7→ R ∪ {−∞,∞} maps an
STL formula φ ∈ F , a trace τ ∈ T , and a sampled time instance t ∈ ST to a
real value s.t.:
- θ(>, τ, t) =∞, θ(⊥, τ, t) = −∞
- θ(µ, τ, t) = P(g(τ(t))− α) where µ(x) := (g(x) ≥ α)
- θ(φ1 ∧ φ2, τ, t) = min(θ(φ1, τ, t), θ(φ2, τ, t))
- θ(φ1 ∨ φ2, τ, t) = max(θ(φ1, τ, t), θ(φ2, τ, t))
- θ(F[t1,t2]φ, τ, t) = C(γ, t1, t2) sup

t′∈[t+t1,t+t2]
θ(φ, τ, t′)

- θ(G[t1,t2]φ, τ, t) = E(γ, t1, t2) inf
t′∈[t+t1,t+t2)

θ(φ, τ, t′)

- θ(φ1U[t1,t2]φ2, τ, t) = E(γ, t1, t2) sup
t′∈[t+t1,t+t2]

(min(θ(φ2, τ, t
′), inf

t′′∈[t,t′)
θ(φ1, τ, t

′′)))
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where the peak function P(r) = 1
r+e−βr

− e−r,
the contraction function C(γ, t1, t2) = 2

1+eγ(t2−t1+1) ,

the expansion function E(γ, t1, t2) = 2
1+e−γ(t2−t1+1) ,

β ≥ 1 is a coefficient chosen to determine sharpness of peak and γ ≥ 0 is a
coefficient chosen to trade-off tightness in time vs tightness over predicates for a
given time-scale and spread of continuous variables. We choose to use the expan-
sion function E in the definition of tightness of U-formulae. We could replace E

by C if shorter time-intervals are preferred in the U-operator.

If both the time-interval and predicate threshold is unknown for a temporal
operator, then there is a choice in either tightening time-intervals and discovering
predicates that hold over these or to find tighter predicates over longer (in case
of eventually) and shorter (in case of globally) operators. Increasing γ would
result in tighter time-intervals. Increasing β would result in tighter predicates. In
the following theorem, we summarize the relation between the tightness metric
and satisfaction of STL formula.

Theorem 1. The tightness metric for a given STL formula φ, namely θ(φ, τ, t)
is nonnegative if and only if τ satisfies φ at time t.

Proof. We first show that θ(φ, τ, t) ≥ 0 if and only if ρ(φ, τ, t) ≥ 0 using struc-
tural induction. We have only two nontrivial cases:
- Atomic Predicates: We know that 1

r+e−βr
− e−r ≥ 0 where β ≥ 1 if and only

if r ≥ 0. Hence, θ(µ, τ, t) = 1
r+e−βr

− e−r ≥ 0 if and only if r = g(τ(t)) − α =
ρ(µ, τ, t) ≥ 0
- Temporal Operators: C(γ, t1, t2) = 2

1+eγ(t2−t1+1) ≥ 0 for all t2 > t1 and

E(γ, t1, t2) = 2
1+e−γ(t2−t1+1) ≥ 0 for all t2 > t1. Hence, θ has the same sign

as ρ, that is, θ(φ, τ, t) ≥ 0 if and only if ρ(φ, τ, t) ≥ 0.
Thus, θ(φ, τ, t) ≥ 0 if and only if ρ(φ, τ, t) ≥ 0 and we know that ρ(φ, τ, t) ≥ 0 if
and only if τ satisfies φ at time t. ut

The theorem above shows that a STL formula φ that has positive tightness
metric (over all the traces τ in some set T ) will also evaluate to True in all
these traces. But we want a formula that is not only consistent with the traces,
but also tight on the traces. The following lemma says that optimizing for the
tightness metric results in tight formulas.

Lemma 1. Given a trace τ and a template STL formula φ(p1, p2, . . . , pk) with
k unknown parameters (Definition 6), let

(v∗1 , v
∗
2 , . . . , v

∗
k) = arg max

p1,p2,...,pk
θ(φ(p1, p2, . . . , pk), τ, 0)

be a solution v∗ = (v∗1 , . . . , v
∗
k) such that θ(φ(v∗), τ, 0) is a finite nonnegative

value. Then v∗ is a solution for the ε-tight STL learning problem on the singleton
set {τ} of traces for any value of ε such that ε > η, where η is no more than the
robustness ρ(φ(v∗), τ, 0) of the discovered instantated formula. The value η can
be made arbitrarily small with appropriate choice of β, γ.
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Proof. (Sketch) We again argue by structural induction over the template φ.
Since φ is negation-free, we have three cases. (Case 1) If the top symbol of φ
is a temporal operator with a time bound [t1, t2] such that either t1 or t2 is a
parameter, then our definition of θ guarantees that the interval [t∗1, t

∗
2] (in the

instantiated solution) is maximally elongated or contracted, and hence φ(v∗)
can be falsified by an ε perturbatation to the interval, for any ε > 0. (Case 2)
If φ is an atomic predicate, then the robustness measure ρ clearly defines the
minimum perturbation required to falsify it. (Case 3) If the top symbol of φ is
∨ or ∧, we can reason inductively one or both of the subformulas.

For the second part, note that we can decrease η by choosing a large β
and γ > 0. (Case 1) The value of r at which the function 1

r+e−βr
− e−r peaks

monotonically decreases with β and hence, more tight predicates (smaller r) can
be learnt by increasing β. Hence, η decreases by increasing β. (Case 2) From the
definition of C, we observe that the function 2

1+eγ(∆t+1) decreases monotonically

with γ and the function 2
1+e−γ(∆t+1) increases monotonically with γ. Thus, if γ >

0, these functions cause us to learn the largest or smallest possible time interval,
and hence changing the learnt intervals even slightly falsifies the formula. Hence,
if γ > 0, then η = 0 for formulas that have a parametric temporal operator at
the top. ut

We can lift Lemma 1 to a set of traces, but we lose the ability to arbitrarily
decrease η.

Theorem 2. Given a set of traces T and a template STL formula φ(p1, p2, . . . , pk),
let

(v∗1 , v
∗
2 , . . . , v

∗
k) = arg max

p1,p2,...,pk
[min
τ∈T

θ(φ(p1, p2, . . . , pk), τ, 0)]

define the solution v∗ = (v∗1 , . . . , v
∗
k) such that minτ∈T θ(φ(v∗), τ, 0) is nonnega-

tive. Then the learnt formula φ(v∗) solves the ε-tight STL learning problem for
a value of ε such that ε > η, where η = minτ∈T ρ(φ(v∗1 , . . . , v

∗
k), τ, 0) is the stan-

dard robustness measure of the discovered instantated formula. The value η gets
no larger by increasing β and γ.

We use an off-the-shelf solver - quasi-Newton algorithm [12, 34] to solve the
above optimization problem. It uses gradient during optimization where the
search direction in each iteration i is computed as di = −Higi. Hi is the inverse
of the Hessian matrix and gi is the current derivative. The Hessian is a matrix of
second-order partial derivatives of the cost function and describes its local cur-
vature. Due to the smoothness of the defined tightness metric θ, gradient-based
optimization techniques are very effective in solving the STL learning problem
since both the gradient and the Hessian can be conveniently computed. We also
used the gradient-free optimization to experimentally validate the advantage of
smoothness of tightness metric. The optimization engine behind gradient-free
optimization is differential evolution [29].
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5 Experimental Evaluation

The presented approach is implemented in a publicly available tool: TeLEx4.
We evaluated the effectiveness of TeLEx on a number of synthetic and real case-
studies. All experiments were conducted on a quad core Intel Core i5-2450M
CPU @ 2.50GHz with 3MB cache per core and 4 GB RAM.

1. Temporal Bounds on Signal x(t) = t sin(t2)

This case-study was designed to evaluate the scalability of TeLEx as well as
the tightness of learnt STL formulae using a synthetic trajectory for which we
already know the correct answer. We also compare gradient-based TeLEx with
gradient-free optimization to demonstrate the utility of smoothness of proposed
tightness metric. We consider the signal x(t) = t sin(t2). We consider 12 STL
templates of the form:

template(k) ≡
k∧
i=0

(G[i,i+1](x ≤ p2i ∧ x ≥ p2i+1))

where k = 0, 1, . . . , 11. Thus, the number of parameters in these templates grow
from 2 to 24. We repeated learning experiments 10 times in each case since
numerical optimization routines are not deterministic.
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Fig. 4: Tightness and Scalability of TeLEx Using Gradient Based Optimization

Figure 4(a) shows the signal trace from time t = 0 to t = 12 along with the
bounds discovered by TeLEx while synthesizing the STL property using tem-
plate template(12) (the largest template) and gradient-based optimization. The
tightness of bounds demonstrates that the learnt STL properties are tight (and
have very low variance) even with 24 parameters. The robustness values for
learnt STL properties were always very small (between 0.02 and 0.12). We ob-
served that gradient-free differential evolution also discovered tight properties
in all cases (robustness value between (0.06 and 0.35) in which it terminated.
Figure 4(b) and (c) show the runtime of gradient-based and gradient-free opti-

4 https://github.com/susmitjha/TeLEX
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mization techniques respectively. Gradient-free methods did not terminate in an
hour for more than 18 parameters. We plot the mean runtime (along with stan-
dard deviation) from 10 runs with respect to the number of parameters being
learnt for each of the 12 templates. The variability in runtime (standard devia-
tion plotted as error bars) increases with the number of parameters. We observe
a speed-up of 30X-100X using gradient-based approach due to the smoothness
of tightness metric (scales of y-axis in Figure 4(b) and (c) are different).

2. Two Agent Surveillance

0,0 5,0 10,0

0,5

0,10 5,10 10,10

10,5

Fig. 5: Two Agent Surveil-
lance

We consider a two agent surveillance system in
which both agents monitor a 10x10 grid as illus-
trated in Figure 5. Intruders can pop up at any of
the 8 locations marked by circles. But at any point,
there are at most two intruders. The two agents are
initially at 0, 0 and 10, 10 respectively. The agents
follow a simple protocol. At each time-instant, the
agents calculate the distance from their current lo-
cation to the intruders (if any), then they select the
intruder closest to them as their target for inspec-
tion and move towards it. The target of an agent
might change while moving (when second intruder
pops up and it is closer to the agent moving to-
wards first). After an intruder location is inspected,
it is considered neutralized and the agent stays there
until new target emerges. The simulator for this simple surveillance protocol is
available at the tool website5. We simulated this for 1000 time-steps and then
used TeLEx to learn STL corresponding to the following two properties.

– The maximum time between intruder popping up and being neutralized is
39.001 time-steps.

– The distance between the two agents is at least 4.998. This non-collision
between agents is an emergent property due to “move-to-closest” policy of
agents and the fact that there are at most two intruders at any given time.

2. Udacity Autonomous-Car Driving Public Data-set

In this case-study, we use the data made available publicly by Udacity as a
part of its second challenge for autonomous driving6. The data corresponds to
an instrumented car (2016 Lincoln MKZ) driving along El Camino Real (a major
road in San Francisco Bay Area) starting from the Udacity office in Mountain
View and moving north towards San Francisco. We use HMB 1 data-set which
is a 221 seconds snippet with a total of over 13205 samples. It has a mixture of
turns and straight driving. The data-set includes steering angle, applied torque,

5 https://github.com/susmitjha/TeLEX/blob/master/tests/twoagent.py
6 https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
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speed, throttle, brake, GPS and image. For our purpose, we focus on non-image
data. The goal of this data-set is to provide real-world training sample for au-
tonomous driving. Figure 6 shows how the angle and speed vary in the Udacity
data-set.

(a) Angle (b) Speed

Fig. 6: Angle and Speed for a subset of Udacity data

We use the tight STL learning approach presented in this paper to learn
temporal properties relating angle, torque and speed. Such learned temporal
properties could have several utilities. It could be used to examine whether a
driving pattern (autonomous or manual) is too conservative or too risky. It could
be used to extract sensible logical relations that must hold between different
control inputs (say, speed and angle) from good manual driving data, and then
enforce these temporal properties on autonomous driving systems. It could also
be used to compare different autonomous driving solutions. We are interested
in the following set of properties and we present the result of extracting these
using TeLEx . We would like the robustness metric to be as close to 0 as possible
and in all experiments below, we found it to be below 0.005.

1. The speed of the car must be below some upper bound a ∈ [15, 25] if the
angle is larger than 0.2 or below -0.2. Intuitively, this property captures
required slowing down of the car when making a significant turn.

Template STL: G[0, 2.2e11](((angle ≥ 0.2)|(angle ≤ −0.2))⇒ (speed ≤ a?15; 25))

Synthesized STL: G[0.0, 2.2e11](((angle ≥ 0.2)|(angle ≤ −0.2))⇒ (speed ≤ 22.01))

Performance: Tightness Metric = 0.067, Robustness Metric = 0.004
Runtime: 8.64 seconds

2. Similar to the property above, the speed of the car must be low while ap-
plying a large torque (say, more than 1.6). Usually, torque is applied to turn
along with brake when driving safely to avoid slipping.

Template STL: G[0, 2.2e11](((torque ≥ 1.6)|(torque ≤ −1.6))⇒ (speed ≤ a?15; 25))

Synthesized STL: G[0.0, 2.2e11](((torque ≥ 1.6)|(torque ≤ −1.6))⇒ (speed ≤ 23.64))

Performance: Tightness Metric = 0.221, Robustness Metric = 0.005
Runtime: 10.12 seconds
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3. Another property of interest is to ensure that when the turn angle is high
(say, above 0.06), the magnitude of negative torque applied is below a thresh-
old. This avoids unsafe driving behavior of making late sharp compensation
torques to avoid wide turns.

Template STL: G[0, 2.2e11]((angle ≥ 0.06)⇒ (torque ≥ b?− 2;−0.5))

Synthesized STL: G[0.0, 2.2e11]((angle ≥ 0.06)⇒ (torque ≥ −1.06))

Performance: Tightness Metric = 0.113, Robustness Metric = 0.003
Runtime: 7.30 seconds

4. Similarly, when the turn angle is low (say, below -0.06), the magnitude of
positive torque applied is below a threshold to avoid late sharp compensating
torques.

Template STL: G[0, 2.2e11]((angle ≤ −0.06)⇒ (torque ≤ b?0.5; 2))

Synthesized STL: G[0.0, 2.2e11]((angle ≤ −0.06)⇒ (torque ≤ 1.25))

Performance: Tightness Metric = 0.472, Robustness Metric = 0.002
Runtime: 5.00 seconds

5. The torque also must not be so low that the turns are very slow and so, we
require that application of negative torque should decrease the angle below
a threshold within some fixed time.

Template STL: G[0, 2.2e11]((torque ≤ 0.0)⇒ F [0.0, 1.2e8](angle ≤ a?− 1; 1))

Synthesized STL: G[0.0, 2.2e11]((torque ≤ 0.0)⇒ F [0.0, 1.2e8](angle ≤ 0.01))

Performance: Tightness Metric = 0.727, Robustness Metric = 0.002
Runtime: 46.59 seconds

6 Conclusion

In this paper, we presented a novel approach to learn tight STL formula using
only positive examples. Our approach is based on a new tightness metric that
uses smooth functions. The problem of learning tight STL properties admits
a number of pareto-optimal solutions. We would like to add the capability of
specifying preference in which parameters are tightened. Further, computation
of the metrics on traces over optimization can be easily parallelized. Another di-
mension is to study other metrics proposed in literature to quantify conformance
and extend tightness over these metrics [8, 19]. In conclusion, TeLEx automates
the learning of high-level STL properties from observed time-traces given user-
guidance in form of templates. It relies on a novel tightness metric defined in this
paper which is smooth and amenable to gradient-based numerical optimization
techniques.
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11. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: International Conference on Formal Modeling and Analysis of Timed Systems.
pp. 92–106. Springer (2010)

12. Facchinei, F., Lucidi, S., Palagi, L.: A truncated newton algorithm for large scale
box constrained optimization. SIAM Journal on Optimization 12(4), 1100–1125
(2002)

13. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In:
Formal Approaches to Software Testing and Runtime Verification, pp. 178–192.
Springer (2006)

14. Fu, J., Topcu, U.: Synthesis of joint control and active sensing strategies under tem-
poral logic constraints. IEEE Trans. Automat. Contr. 61(11), 3464–3476 (2016),
http://dx.doi.org/10.1109/TAC.2016.2518639

15. Giuseppe, B., Cristian Ioan, V., Francisco, P.A., Hirotoshi, Y., Calin, B.: A Decision
Tree Approach to Data Classification using Signal Temporal Logic. In: Hybrid
Systems: Computation and Control (HSCC). pp. 1–10. Vienna, Austria (April
2016)

16. Gold, E.M.: Language identification in the limit. Information and control 10(5),
447–474 (1967)



TeLEx: STL Learning 17

17. Horning, J.J.: A study of grammatical inference. Tech. rep., DTIC Document
(1969)

18. Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic
properties in model based design for cyber-physical systems. arXiv preprint
arXiv:1512.07956 (2015)
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