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ABSTRACT 

Modern smart phones and tablets are battery-constrained 
by their mobility; this constraint is heavily factored into 
any design decision made on the device. Furthermore, the 
display is one of the most power-consuming subsystems. 
Adaptive display brightness systems attempt to address this 
high display power consumption by setting the brightness 
depending on the surrounding ambient light levels. 

In this work, we run a series of user studies aimed at 
gauging the accuracy of these adaptive brightness models. 
These studies compare subjective satisfaction and readability 
metrics on a common smartphone display and find that the 
adaptive brightness system isn't well-tuned to user prefer
ences. We also find that subjective ratings and readability 
are closely correlated with one another across different dis
play brightness levels, which can be used to give a better 
understanding of how screen brightness levels impact users. 

Additionally, we note that operating systems need to re
duce the power envelope of the device for a variety of reasons. 
This is done without understanding the impact of these deci
sions on user satisfaction, and can significantly degrade user 
experience. In this work, we propose a user-aware method 
of reducing display power consumption, which allows display 
power to be throttled while understanding the resulting im
pact on the user. By considering this impact on the user, 
we devise an optimal dimming scheme which can reduce 
the time-weighted readability degradation by upwards of 
21.5%. 

1. INTRODUCTION 
In modern mobile devices, the touchscreen display has 

taken front and center as the most important interface that 
users interact with. Not only does the touchscreen display 
act as the primary means of output to the user, but with the 
absence of hardware keyboards and buttons on many mobile 
devices, it is now the primary means of input as well. With 
this elevated station that touchscreen displays have come 
to enjoy in smart phones and tablets, more and more focus 
is being placed on the design and features of the display. 
The trend of mobile displays is increasingly toward larger, 
brighter, higher-resolution displays [10] , and this trend is 
undoubtedly a sight for sore eyes everywhere. 

However, this trend toward larger and brighter displays 
does not come without cost; although many manufacturers 
tote the energy efficiency of their displays, Chen et al. [3] find 
that generational improvements in OLED displays account 
for minor improvements in power consumption. They find 
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that after two Samsung display design iterations, normalized 
full-brightness per-pixel power efficiency only improves by 
5.7%; this is reduced even further when the current trend 
toward increasingly larger screens is considered. Furthermore, 
they find that the most significant contributor to power 
consumption is the size of the screen itself. With larger 
devices, although the battery tends to be bigger, the screen is 
also larger, and considering the lack of significant generational 
improvements in power consumption, there is no reason to 
expect that display power will not continue to be a significant 
consumer of power in mobile devices. 

Because the display consumes a significant amount of 
power, adaptive brightness systems are one way that dis
play manufacturers attempt to reduce the display's power 
envelope while improving user satisfaction with the display's 
brightness. Adaptive brightness systems control a display's 
brightness via ambient light sensors which give an indication 
of incident environmental light on the screen. These adap
tive brightness systems can significantly reduce the power 
usage compared to a display which is constantly set to a high 
brightness level. Also, adaptive brightness systems have the 
advantage of causing less eye strain by avoiding setting the 
brightness too high when in a dim lighting environment [12]. 

In this work, we wish to gauge how effective these adaptive 
brightness systems actually are at satisfying users' brightness 
requirements. To do this, we design a user study which 
allows us to gather subjective display brightness satisfaction 
ratings and readability data for a series of users at a selection 
of ambient light and screen brightness levels. From these 
results, we find that the default automatic brightness system 
that comes shipped with the device isn't well-tailored to the 
group of users we studied. 

Furthermore, we find that subjective user ratings are 
closely correlated with an objective readability metric, espe
cially in brighter lighting environments. This strong, direct 
correlation is interesting because it suggests that by using 
this relationship, it's possible to understand how much of an 
impact selecting a given brightness level will have on a user, 
without needing to directly gather subjective ratings from 
the user. 

We also study the impact that various brightness throttling 
schemes have on users. System power may need to be reduced 
below the standard power envelope for many reasons. For 
example, one common reason for reducing display brightness 
is low-battery situations. When the battery falls under a 
critical threshold, many smartphones reduce the display's 
brightness to help extend the device's remaining on-screen 



time. Additionally, there are systems such as system-level 
dynamic thermal management [9] , which reduce system power 
consumption in an attempt to reduce the system's total heat 
levels. Any OS subsystem can cause power throttling events, 
but the underlying issue with these systems is that they do 
not consider the impact that these power savings decisions 
have on the user. 

To explore this further, we conduct another study which 
collects data on what lighting environments are commonly 
encountered throughout the day by a typical user. Using 
these results along with the previous readability and ratings 
data, we directly analyze how much power can be saved with 
a specified degradation in readability. We also compare a 
user-agnostic system which degrades the display by a con
stant brightness level or constant brightness percentage, to 
our proposed user-aware system which degrades the display's 
brightness more in brighter environments. Any backlight 
dimming power savings decision will impact users to some 
degree, but by considering how these decisions affect the user, 
it's possible to reduce the average impact over a period of 
time. Using our user-aware brightness throttling scheme can 
achieve an 8% average system power reduction while only 
degrading average readability by 3.2%; this is 21.5% less of a 
degradation than the next best user-agnostic method. Even 
more importantly, this method allows us to directly under
stand how the power decisions will affect users, which makes 
these power decisions more well-informed than arbitrarily 
throttling system power. 

In summary, we make the following primary contributions: 

• We find a correlation between subjective user ratings and 
an objective readability metric 

- We run user studies which gather subjective ratings 
and visual discernment task data across multiple light
ing environments 

- We present analysis which shows a strong correlation 
between objective visual discernment and subjective 
ratings 

- We perform the first analysis on the impact of adap
tive screen brightness mechanisms on readability 

• We create a model for screen brightness which maximizes 
time-averaged screen readability 

- We compare existing adaptive brightness systems to 
a properly calibrated one 

- We create a power throttling model which maximizes 
time-averaged readability for a given power reduction 

- We compare our system's time-averaged readability 
against other power throttling models 

In Section 2, we give some background information re
garding the human visual system, mobile display optics, and 
brightness and power characteristics of our experimental de
vice. Section 3 outlines the user studies that we run to gather 
data for our analysis. We present our results in Section 4, 
analyze some related work in the field in Section 5, and 
conclude in Section 6. 

2. BACKGROUND 

2.1 Mobile Display Optics 
Luminance (L) and contrast ratio (C) are two of the most 

important metrics involved with gauging how easily the hu
man visual system can see details on a mobile display [8, 14]. 
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Luminance is defined as the intensity of light per unit area, 
and is colloquially referred to as brightness in the context 
of mobile displays. Contrast ratio is related to luminance; 
generically defined, contrast ratio compares the luminance 
of the colors black and white (Lblack and Lwhite) as they ap
pear on the display. Lblack is never exactly zero on an LCD 
display; there is always some amount of light which leaks 
through the liquid crystal matrix, even on an image which 
is intended to be fully black. Similarly, LWhite is limited 
by how bright the LCD's backlight is. The contrast ratio 
describes the relative difference between these luminances. 
However, there is not a single well-defined metric which de
scribes contrast ratio, and there are a number of different 
equations which can represent this. One common formula 
for a display's contrast ratio is described in Equation (1): 

C = 
Lwhite - Lblack 

(1) Lwhite 
There are some complexities as to how this is measured 

and reported in consumer devices (such as dynamic contrast 
ratio, static contrast ratio, etc.), but as far as light perception 
is considered, this definition is sufficient. It is important to 
note, Lblack and Lwhite are not entirely self-contained to the 
display itself; the device's ambient light can have a signifi
cant impact on these values. For instance, in a completely 
darkened room, the contrast ratio is precisely defined as 
in Equation (1). However, consider a lighting environment 
which involves a significant amount of ambient light. Since 
the display's optical characteristics necessarily don't absorb 
100% of incoming ambient light, some of that light is reflected 
back at the viewer. This reflected light reduces the resulting 
contrast ratio, as evidenced in Equation (2), with E repre
senting the environmental illuminance and p representing the 
display's reflective coefficient. Contrast ratio has a significant 
impact on discerning visual detail, and this relationship of 
contrast ratio with ambient light explains why it is easier to 
read backlit displays in darker ambient environments. This is 
also the basis for the inclusion of adaptive brightness systems 
in mobile devices. Adaptive brightness systems use ambient 
light sensors to help control the display's brightness: in dim 
environments, the display reduces the display's brightness, 
and in brighter environments, the display is set to higher 
brightness levels. The net result of these systems is that the 
display uses less power and avoids eye strain in dim envi
ronments, while maintaining better contrast ratio in bright 
ones. 

C = 
Lwhite - Lblack 

(2) LWhite + pE 
Now that contrast ratio and its relationship with environ

mental light has been introduced, how does contrast ratio 
and luminance actually impact people's ability to view a 
mobile display? Readability is a metric which describes how 
easily a person can discern visual detail in a given environ
ment. However, similar to contrast ratio, readability doesn't 
have a single definition, and can be represented in a number 
of different ways. We will expand further upon one particu
lar readability metric, Relative Visual Performance (RVP), 
in Section 2.2, but for now, will refer to readability in the 
generic sense. 

Contrast ratio has a heavy influence on readability. This 
relationship is intuitive; contrast ratio is similar to the con
cept of signal-to-noise ratio, where the magnitude of the 
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(a) 20 year old, 1.5' detail (b) 50 year old, 1.5' detail (c) 75 year old, 1.5' detail 

Figure 1: Aggregated readability curves [8] for users of varying ages, generated using data from CIE [4] . As users age, their 
ability to discern detail drops significantly at a given luminance and contrast ratio level. Contrast ratio and luminance are 
both strong predictors of readability. 

signal is compared to the magnitude of the noise on top 
of the signal. Larger differences between these magnitudes 
leads to a stronger, more obvious signal. Luminance's rela
tionship with readability, however, is somewhat less direct. 
One might expect that if the contrast ratio is the same at 
two different luminance levels, the readability would also be 
the same. However, this is not the case. The human eye is 
not a simple sensor; there is a homogeneous mix of types 
of light-detecting cells, each of which respond to different 
ranges of luminance levels. Because of this, only some of 
the light-detecting cells in the eye are active in low-light 
environments, which reduces the eye's effective resolution [7]. 
In high-luminance environments, all of the light detecting 
cells remain active, which improves the eye's visual acuity. 
The end result of this is that readability is better at higher 
luminance levels, when the contrast ratio is held constant. 
This doesn't mean that increased ambient light leads higher 
to readability, however; increasing ambient light increases the 
screen's luminance due to reflected light, but it also reduces 
the contrast ratio, which lowers the effective readability on 
most LCD displays (as Equation (2) describes). Contrast 
ratio is a more significant indicator of readability than the 
overall luminance [7] . 

The standards organization CIE [4] conducted a study 
intended to gauge the impact that contrast ratio and lumi
nance have on readability. Readability was measured across 
a selection of users, at a number of contrast ratios and lumi
nance levels, the results from which are shown in Figure 1. 
As previously discussed, the study found both contrast ratio 
and luminance to strongly impact readability. There is also 
a significant degradation of readability as users age. The 
curves contain aggregated data from a wide selection of users, 
and individual users will each have their own personal read
ability curves, but on average, a 75-year-old requires roughly 
twice the contrast ratio that a 20-year-old does at the same 
luminance and contrast ratio to achieve similar readability 
levels. This trend in readability data is further explored by 
Kelley et al. [8] . 

2.2 Readability Metrics 
We introduced the notion of readability in Section 2.1, but 

thus far have only used the term in the generic sense. For the 
remainder of this work, we use Relative Visual Performance 
(RVP) as our target readability metric. RVP is an objective 
metric which directly measures how quickly and accurately a 
visual discernment task can be completed. A visual discern-
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Figure 2: Diagram of critical detail size of the letter 'E'. 
Critical detail is 1/5th of overall height of letter. 20/20 
vision requires ability to resolve 1 arcmin of detail. 

Errl31.L1 
Figure 3: A series of tumbling E glyphs. 

ment task involves asking users to identify textual glyphs of 
a specified size; the Snellen chart, which contains letters of 
descending size and is commonly used by optometrists, is 
one example of this. RVP has been shown to have a strong 
dependency to contrast ratio and luminance, as described by 
CIE [4] . 

To make an RVP measurement, a user is asked to visually 
identify a series of characters with a critical detail of a 
known size. A critical detail is a feature in a textual glyph 
which is required to be properly resolved to correctly identify 
the glyph (see Figure 2) [7] . One test, commonly used 
with young or otherwise illiterate test subjects, consists of 
a series of E characters which are tumbled in one of four 
orientations, as in Figure 3. The subjects are asked to identify 
the orientation of each of the letters in this test. The accuracy 
and speed at which users can identify these is measured, and 
RVP is calculated via Equation (3). Because RVP is an 
experimentally-derived metric, it will vary between iterations 
and users to some degree. 

correctly identified E's speed = 

t' zme 

correctly identified E's accuracy = 

total E's 

RV P = accuracy· speed (3) 
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Figure 4: Comparison of brightness levels as indicated by 
the as to actual brightness levels, as measured by an exter
nal light meter. Screen brightness is linear with the O S's 
indicated levels, although the granularity of brightness drops 
at higher screen brightness levels. 
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Figure 5: Comparison of Nexus 4 current draw at various 
screen brightnesses with idle system. Blue dots represent indi
vidual amperage readings, and the dotted red line represents 
the linear best fit. 

2.3 Display Characteristics 
In this section, we examine the power and brightness 

characteristics of our targeted smartphone device. We use 
@ TM 

the Coogle Nexus 4 smartphone, which contains a 4.7", 
320ppi IPS LCD display [5]. LCD displays are more common 
and more mature than the newer OLED displays, but the 
two behave similarly from an optical standpoint. 

Most modern mobile displays have brightness controls 
which can be accessed programmatically by the operating 
system. However, these brightness values as reported by the 
as aren't guaranteed to be directly related to the display's 
actual brightness. Because of this, we use an external light 
sensor from a second Nexus 4 device to verify that the dis
play brightness levels indicated by the operating system are 
linear with the screen's actual brightness (Figure 4), and 
find that they are linearly correlated. This is conducted in a 
darkened room to remove the effect of environmental light. 
It is interesting to note that the granularity of the measured 
screen brightness is lower at the higher screen brightness 
levels. This may be because the human visual system's sensi
tivity to change in stimuli is reduced at higher brightnesses, 
making it unnecessary to implement all of the brightness 
levels on the display. 

We similarly analyze the relationship between brightness 
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Figure 6: Brightness curve of adaptive brightness model on 
the Nexus 4 device. Screen brightness is linear with the 
square root of ambient light. 

and power by comparing the device's power consumption 
across multiple screen brightnesses via the Nexus 4's internal 
current sensor. The results are presented in Figure 5, and 
suggest a linear trend between power and display brightness. 
These amperage numbers are only valid for a idle system; 
system power will be higher when actively running workloads. 
The idle system power at minimum brightness is 562.4m W. 
From Figure 4 and Figure 5, we can treat the OS-indicated 
brightness levels as linear with measured screen brightness 
and power consumption. 

Finally, we wish to note what adaptive brightness sys
tem the device uses by default. In the case of the Nexus 4, 
the brightness levels are adjusted via a static model which 
translates the ambient light levels to a corresponding screen 
brightness. This data was retrieved from the operating sys
tem, and the continuous model of this data is presented in 
Figure 6. According to this model, the screen brightness 
is linear with the square root of the ambient light levels, 
reflecting Steven's Law [19] . 

3. EXPERIMENTAL SETUP 
The goal of this work is to develop a better understanding 

of how a wide variety of users interact with and respond 
to mobile displays, and to explore potential power and user 
experience optimizations in light of this new data. The 
first two experiments we perform are conducted in a lab 
environment which allows us to directly control ambient light 
and screen brightness levels, giving us further insight into 
the impact that screen brightness and ambient light has on 
users. We also conduct a third experiment which allows us to 
analyze how users interact with their devices in typical day
to-day use. The details of these experiments are described 
below. 

3.1 Screen Readability Study 
As described in Section 2, readability is important to 

consider in any mobile display. RVP, which relates the speed 
and accuracy of a visual discernment task, has the advantages 
of being a bounded and normalized metric, and also uses 
easily gathered data which doesn't require sophisticated eye 
tracking apparatus. Furthermore, RVP also is significantly 
dependent on contrast ratio and luminance. 

We wish to understand how RVP varies with screen bright
ness and ambient light levels across a variety of users by di
rectly comparing RVP to subjective user ratings in identical 



ambient lighting and display environments. To accomplish 
this, we analyze readability in this study, and then perform 
the subjective rating study described in Section 3.2. This 
study was set up as follows. 

Users are asked to sit down in front of a Google Nexus 4 
smart phone device which is fastened in front of the user. A 
high-brightness halogen lamp stand with a variable brightness 
slider is used to control the ambient light levels to simulate 
the full range of brightnesses that a user may encounter 
in day-to-day life. This lamp allows us to create ambient 
lighting environments ranging from a dark room (0 lux) to a 
sunlit day (:c:: 4999 lUX). The lamp is placed behind the user's 
shoulder and aimed toward the fastened Nexus 4, causing 
reflections which reduce the effective contrast ratio. 

To conduct each iteration of the study, users begin with a 
blank screen which contains a start button. Upon pressing 
that button, users are presented with a grid of 20 E's which 
are tumbled in either an up, down, left, or right orientation 
(as in Figure 3). Users are asked to touch the E's which are 
in either an up or down orientation, while ignoring those 
in a left or right orientation. Upon completing this visual 
discernment task, the user presses the stop button, and our 
system logs the screen brightness, ambient light level, and 
the speed and accuracy at which the user completed the 
task. This same task is repeated 60 times (5 discrete ambient 
light levels, and 12 screen brightness levels for each), with 
a 15-second gap in-between tasks, each at a different screen 
brightness and ambient light combination. The ordering of 
these ambient light and screen brightness combinations is 
randomized to reduce order-effect bias. 

1 arcmin is a generally accepted threshold of detail that a 
healthy human eye can typically resolve, and is the visual 
discernment resolution required for 20/20 vision [7] . For 
this reason, we use 1 arcmin as our target critical detail 
size, as shown in Figure 2. We set this gap size to exactly 2 
pixels on our study, which allows us to avoid dealing with 
subpixel display issues like anti-aliasing. Since the Nexus 4 
has a 320ppi screen, we situate users 21.6 inches from the 
display to achieve the 1 arcmin critical detail gap. Users are 
given the option of using a larger E if they couldn't discern 
1 arcmin of detail, but no users required this. 

We ran this experiment on a set of 30 undergraduate and 
graduate students. These users are primarily in the 20-30 
year age range, and so is not representative of the entire 
population. This does, however, allow us to analyze the 
variability in that subgroup. Older users are expected to 
have a similar reaction to changes in brightness, but with 
generally brighter display requirements. 

3.2 Subjective Brightness Satisfaction Study 
In addition to readability analysis, we are also interested 

in relating user satisfaction to ambient and brightness levels. 
We use the same lighting setup and the same 30 users as 
in Section 3.1. We again fasten the phone at a constant 
distance of 21.6 inches from the users. 

This time, however, instead of having the users perform 
a synthetic visual discernment task, users are asked to read 
and interact with the BBe News Android application [1] . 
While they are browsing the articles on the application, a 
dialog box pops up every 30 seconds, and users are asked 
to rate how satisfied the current ambient light and screen 
brightness levels are. The options are much too dim, slightly 
too dim, perfect, slightly too bright, and much too bright. 
Users are instructed to interpret the modifier much as a 
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lighting situation where the user would likely go out of their 
way to adjust the screen's brightness. Slightly is defined as a 
situation where users likely wouldn't adjust the device, but 
it isn't set exactly where they'd prefer. Perfect is just as it 
sounds; users are completely satisfied in this situation. 

As in the previous study, after each of these subjective 
ratings, the ambient light and screen brightness levels are ran
domly adjusted to one of the 60 discrete ambient light/screen 
brightness combinations. These ambient light and screen 
brightness combinations are identical to the previous experi
ment to allow for direct comparisons between the two studies. 
This is repeated 60 times, and the ambient and screen bright
ness levels and the subjective ratings are recorded after each 
user indication. 

3.3 Device Usage Study 
As a final data collection component to this study, we also 

want to understand how real users interact with their devices 
over the course of a day. Specifically, the data we wish to 
collect includes the average amount of time per day that 
users spend on their phones, as well as the ambient light 
levels that they encounter throughout the day. With this 
data, we can then integrate any power savings techniques 
we come up with over time to determine the daily battery 
impact that these techniques have. 

We collected data from 5 individual users over the course 
of 14 days. We log the times that the users turn on/off their 
smartphone screens, as well as the ambient light levels that 
they are in during this time. We poll this data at a rate of 
once every 5 seconds. This collection system was devised as 
an Android application which was distributed via the Google 
Play Store [6] to users from a wide range of geographies, 
which helps account for bias due to latitudinal location. No 
data regarding readability or subjective ratings is collected 
in this experiment. 

4. RESULTS 
In this section, we describe the analyses of the experiments 

described in Section 3. We analyze the correlation between 
screen readability and subjective ratings at various ambient 
light and screen brightness levels in Section 4.1. We inves
tigate how well-suited existing default adaptive brightness 
system are for our sampling of users, and compare this to 
a calibrated model in Section 4.2. We then analyze the 
potential power savings that we can achieve by degrading 
the readability and ratings metrics by known quantities in 
Section 4.3. In Section 4.4, we present our analysis of the 
ambient light and device usage study. We then present our 
readability-aware brightness throttling model in Section 4.5. 
Finally, we give a comparison of the impact that power sav
ing decisions made by brightness throttling systems have on 
readability in Section 4.6. 

4.1 Screen Readability and Subjective 
Ratings 

In Sections 3.1 and 3.2 we described the studies that were 
conducted on 30 users to gather data on users' readability and 
subjective satisfaction in these lighting scenarios. Now, we 
average the 30 users' data for each of the 60 ambient lighting 
and screen brightness combinations. We aggregate the user 
data study rather than deal with individuals because we want 
to understand how the average behaves, although individual 
tendencies are important in final user-facing applications [15, 
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Figure 7: Comparison of RVP and subjective ratings at various ambient light and screen brightness levels. 

17, 18] . 
The aggregated data is presented in Figure 7. The readabil

ity and ratings data are plotted on separate axis, but the axis 
are scaled to make them directly comparable. The readability 
data is presented as raw data; it is a continuous metric, and 
allows for presentation in this manner. The rating data, how
ever, is nominal; to make it possible to graphically present 
this data, we convert the nominal ratings to numeric data 
before averaging each user's data. Any rating of perfect is 
given a value of 3, any rating of slightly too dim or slightly 
too bright is given a value of 2, and any rating of much too 
dim or much too bright is given a rating of 1. This allows 
us to not only see the relative satisfaction of the users with 
the screen's brightness, but also see the point at which the 
ratings peak; either side of this peak would be relatively too 
bright or too dim. 

Figure 7 shows that the default adaptive brightness system 
doesn't align well with either RVP or the ratings peaks in 
these graphs. This suggests that the adaptive brightness 
system is not calibrated well on this device. We explore 
this further in Section 4.2. RVP doesn't seem to decline 
after a certain point like the subjective ratings do, suggesting 
that although users can read the detail on the device well, 
it is still not set to an optimal level. This is important to 
consider as we begin to draw similarities between RVP and 
the subjective user ratings. Finally, the display's brightness 
seems to have diminishing returns as it is increased; after a 
certain point, the screen has to be significantly brightened 
to achieve just a small improvement in ratings or RVP. This 
is a potential point for optimization, which we investigate 
further. 

In addition to the overlaid RVP and ratings plots, we ana
lyze the correlation between RVP and the subjective ratings 
for each ambient level. To perform this analysis, we consider 
each ambient lighting scenario separately. We then calculate 
each user's individual correlation coefficient by comparing 
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Figure 8: Correlation between RVP and subjective ratings at 
various ambient light levels. Correlation is computed using 
Pearson's correlation factor for RVP and subjective ratings at 
selected screen brightness levels across 30 users. Correlation 
is more significant in higher ambient environments 

their RVP and subjective ratings at each screen brightness 
level and present the aggregated correlation coefficients in 
Figure 8. Readability tends not to worsen when the display 
is too bright, although the subjective ratings do degrade; 
because of this, we also create Figure 9, which only cal
culates the correlation between the lowest brightness level 
and the subjective ratings peak for each ambient level. As 
these graphs show, there is a strong correlation between the 
two metrics. However, the correlation is more significant 
at higher brightness levels. Additionally, the correlation be
tween readability and RVP is even higher when you only 
consider this up to the maximal ratings point for each ambi
ent level. Because RVP is so closely mapped to contrast ratio 
and luminance [8] , this data suggests that it is possible to 
use objective task performance metrics (such as RVP, in the 
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Figure 9: Correlation between RVP and subjective ratings. 
Instead of correlating the full range of brightness levels, 
each boxplot only contains data between brightness level 0 
and each ambient level's ratings peak. This second analysis 
demonstrates stronger correlation because ratings drop when 
the screen is deemed to be too bright; overly bright screens 
do not reduce readability in acclimated eyes, however. 
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Figure 10: Relative power consumption of a perfectly cali
brated adaptive screen brightness model (screen brightness 
at the highest average rating), normalized to the default 
adaptive brightness system's power consumption. 

case of display brightness) as an indication of a system's ef
fectiveness, rather than needing to rely on subjective metrics, 
which require direct user interaction. 

4.2 Default vs. Perfectly Calibrated Power 
Consumption 

As shown in Figure 7, there is a particular brightness level 
where increasing the brightness of the screen any further 
stops causing increased user satisfaction, and actually be
gins to degrade the user's subjective satisfaction with the 
system. This phenomenon occurs because after some opti
mal brightness, the screen is excessively bright for the user 
and actually begins to degrade their experience [12] . Fur
thermore, it shows that these ratings "peaks" don't actually 
always align with the default brightness model's brightness 
at that ambient light level. This disconnect between the 
ratings peaks and the adaptive brightness system suggests 
that the adaptive brightness system isn't well-tuned. This 
also suggests that if we were to use this "perfect" brightness 
model instead of the default adaptive brightness model, the 
display would consume different amounts of power as a result. 

To explore this further, we first begin by finding the highest
rated screen brightness level for each of the ambient levels 
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Figure 11: Amount of power that can be saved at a specific 
amount of readability degradation, across selected ambient 
light levels. 

that we explore in our study. Additionally, we find the screen 
brightness that the default adaptive brightness system would 
use for each of these ambient lighting environments. Finally, 
we calculate the difference in screen brightness between the 
two and apply the power model from Figure 5, which gives 
us how much more or less power is consumed by the display 
at the various ambient light levels. This data is presented in 
Figure 10. 

As the figure shows, users actually preferred the display's 
brightness to be set higher than the default model's brightness 
at lower ambient light levels. Additionally, users preferred 
the display to be dimmer than the default model at higher 
ambient levels. 

4.3 Power Savings and Readability 
Degradation 

In Section 2.3, we presented a series of graphs which re
late OS-specified screen brightness values, measured screen 
brightness, and screen power consumption. These three sets 
of data together allow us to determine the impact on system 
power consumption that any change in screen brightness has. 
Furthermore, Section 4.1 shows us exactly how much of a 
change in screen brightness impacts users' RVP at a given 
ambient level. These individual pieces of data can be used 
in tandem to gauge the impact that improving or degrading 
screen readability has on screen power consumption. 

From Figure 7, we analyze the change in screen brightness 
that results from degrading the 30 aggregated users' read
ability at a given ambient level by a known percentage. The 
results of this analysis are presented in Figure 11. As this fig
ure shows, a significant amount of power can be saved at the 
higher ambient light levels with a relatively small readability 
or ratings degradation. Also, the amount of power that can 
be saved at the lower ambient light levels is much smaller. 
This trend is reflected in the work done by Stevens [19] , 
which suggests that human perception generally does not 
follow a linear trend. For instance, the human eye can detect 
a tiny flicker of light in a dark room, but that same flicker 
would be imperceptible in a brighter environment. We use 
this result in our further analysis, which allows us to consider 
the human visual system in any power savings decisions we 
make. There is slightly less potential power savings for a 
given readability level at 4999 lux than there is at 2200 lux. 
This is likely due to the initial default adaptive brightness 
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Figure 12: Amount of time that users spend in various 
ambient light levels with their screens active. 

levels; this suggests that the 4999 lux screen brightness levels 
better matched user requirements than at 2200 lux, and is 
reflected in the slightly lower power savings. 

4.4 Ambient Light Residency Analysis 
In Section 3.3, we outlined a study in which we gather 

ambient light data from a sampling users to get a better 
idea of how users interact with their devices. Specifically, 
we wanted to discover the daily averages of how long users' 
screens were active and what ambient light levels the users 
encountered. For this analysis, we combined all of the users' 
ambient residency durations. We then calculated the CDF of 
these ambient lighting environments over time, as presented 
in Figure 12. We note that the daily on-screen duration 
average is 3.87 hours. 

Dim environments (:s: 30 lux) are shown to make up about 
80% of the total on-screen time. Typically, only interior 
and nighttime environments produce this range of ambient 
light levels, and so this suggests that users spend most of 
their on-phone time indoors. Because most of the time is 
spent at lower ambient light levels, if you were to use the 
perfectly tuned adaptive brightness model as discussed in 
Section 4.2, the system would consume more power since 
this model consumes more power than the default at lower 
ambient light levels (and vice-versa ). However, this would 
improve the overall satisfaction levels, effectively making this 
a design decision. 

4.5 Readability-Aware Brightness Model 
Thus far, we have presented results which characterize 

the relationship between user satisfaction, readability, and 
power consumption. In the remainder of this work, we focus 
on the actual design and characteristics of a dimming algo
rithm which is better tuned to reflect actual user readability 
requirements. Our end goal is to be able to maximize the 
time-weighted readability average over a period of time. We 
learned in Section 4.3 that the brightest ambient regions 
provide the most significant power savings per readability 
degradation level. Hence, in order to maximize the time
weighted readability, we will throttle the screen's brightness 
more significantly in higher ambient-lit environments. 

We begin with our calibrated readability curve, which is a 
static curve of screen brightness vs ambient light. For each 
amount of desired power saved (we generate data between 
1% and 8%), we then generate a readability-aware brightness 
curve. For each of the discrete ambient levels that we stud
ied, we iteratively dim the brightest ambient regions (while 
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Figure 13: Comparison of adaptive brightness curves. The 
depicted curves include the default adaptive brightness algo
rithm, as well as the readability-optimized curves for selected 
power savings levels. 

enforcing monotonicity of the screen brightness) until our 
time-averaged power savings are met. This shape is most 
closely matched to a root function (and is supported by the 
evidence from Stevens [19] ), so we generate the line of best 
fit through these discrete points. We present these generated 
curves in Figure 13. 

These resulting curves have a number of interesting char
acteristics. First of all, the dimmest ambient levels tend to 
actually be slightly brighter than the default algorithm, sug
gestion that the default brightness algorithm isn't properly 
calibrated. The highest power reduction curves are nearly 
flat; these approach the maximum power that can be saved 
on the screen, and so the brightness is aggressively low at all 
ambient levels. The less significant power throttling curves 
look more like a traditional root function. 

These graphs represent how the proposed brightness algo
rithm will behave in terms of screen brightness and power 
savings; in the following section, we examine how they impact 
the time-weighted readability levels. 

4.6 Power Savings and Readability 
Comparison 

We now analyze how much readability is reduced for a given 
amount of power savings for a selection of brightness dimming 
schemes. These dimming schemes all reduce the brightness 
of the display in order to achieve a power reduction target. 
How these schemes differ, however, is how much they dim 
the display when they are in various ambient lighting regions. 
Because we are evaluating these schemes in a time-weighted 
fashion, a scheme which dims the display more aggressively 
in dim environments will have to dim the display less in 
brighter environments to compensate for this, and vice-versa. 
These schemes have been observed in various subsystems 
which throttle display power consumption. 

• Constant: throttles the screen's brightness by a specified 
amount, regardless of the current ambient light or display 
brightness levels. The resulting effect is that the power is 
reduced by the same amount at any ambient light level. 
For example, this scheme might reduce a display at 100% 
brightness to 90% brightness, and a display at 20% bright
ness by the same absolute amount, to 10%. This scheme 
is effective when there is a constant required amount of 
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Figure 14: Comparison of the impact on readability that various dimming schemes have at selected power savings thresholds. 

power savings. 

• Fractional: instead of reducing the brightness by a con
stant amount, the brightness is reduced depending on the 
screen's starting brightness. If this scheme reduces a dis
play at 100% brightness to 90%, it would reduce a display 
at 20% by the same relative percentage, to 18%. This sys
tem will reduce the power more in brighter environments, 
typically leading to higher power savings. 

• Optimal: considers the user's readability curve, and first 
dims the regions which give the best power vs readability 
trade-off, as introduced in Section 4.5. This scheme maxi
mizes the time-averaged readability at a given amount of 
power savings. 

To perform this analysis, we determine how much the 
average readability is degraded at various power savings 
levels. We use the data from Figure 12 to apply the ambient 
light residencies data which gives us a time-weighted average 
impact on readability. 

As Figure 14 shows, these schemes have significantly differ
ent time-weighted average readabilities. The constant scheme 
has the worse time-weighted readability average. This makes 
intuitive sense; since the lower ambient level regions are 
much more sensitive to brightness changes, a large brightness 
decrease in these has a huge negative impact on readabil
ity. The fractional and optimal models have better power 
reduction vs readability reduction performance, as they dim 
the displays more severely in the brighter ambient lighting 
environments, and vice-versa. At an 8% power reduction 
target, the time-weighted average readability drops by 10.7% 
for the constant model, 4.1% for the fractional model, and 
3.1% for the optimal model, a 21.5% improvement over the 
fractional model. This result shows that an optimized power 
model is able to deliver a significantly better average user 
experience at a given power savings level. 

Being able to directly understand the impact that a display 
brightness degradation decision has on the user is useful. 
Instead of arbitrarily making system-level decisions which 
directly affect the end user, these curves allow the system to 
first consider the user impact when throttling the device's 
power. Secondly, it allows for the creation of models (like our 
optimal model), which are optimized to maximize the user's 
satisfaction with the system for a given set of constraints. 

It is important to note, these methods are only applicable 
when saving power over longer periods of time. If the system 
decides that it needs to reduce the amount of power being 
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consumed immediately (e.g., a high-priority thermal emer
gency), it may have to do this without being able to consider 
the impact on readability. However, even in this situation, 
the system is aware exactly how much of an impact such 
a decision has on the user, which enables better-informed 
power saving decisions. 

5. RELATED WORK 
Finding methods of altering the display's image to allow 

the backlight to be dimmed with minimal impact on the 
user's perception is one common method of reducing LCD 
backlight power consumption. Chang et al. [2] present a work 
which allows manipulation of the on-screen image to allow 
the LCD backlight to be reduced while minimally impacting 
the user's perceived image. Ranganathan et al. [13] explore 
the feasibility of using energy-aware user interfaces, which 
are designed to use high-contrast colors schemes and UI ele
ments, which allow the screen to consume less power without 
sacrificing readability. Shin et al. [16] explore a method of 
power-saving image compensation for OLED displays, rather 
than backlit LCD displays. 

Another way of reducing display power is by improving 
the display's optical characteristics, allowing the display to 
reduce the brightness of the backlight while maintaining 
readability. Zhu et al. [20] present a survey of the design 
characteristics of transflective LCD displays, which use ambi
ent light to increase the screen's effective brightness without 
using as much additional backlight power. Lee et al. [11] 
describe an LCD display which uses either an OLED dis
play or a transflective LCD display, depending on how much 
ambient light is currently available. 

Schuchhardt et al. [15] present a system which uses an 
online learning model with multiple contextual sources to 
control system brightness. The end result is a system which 
uses an individualized adaptive brightness model that is bet
ter tuned to user brightness requirements. However, this 
system does not create a readability-aware method of throt
tling display power, nor does it draw a correlation between 
subjective ratings and objective readability metrics. 

Although these studies are all concerned with improving 
the power consumption for a given readability level, there 
are a number of ways that our work differs from these prior 
works. First of all, [2, 13, 16] involve methods of reducing 
the display's power consumption without the user perceiving 
the change; power throttling schemes which reduce screen 
brightness at the cost of reduced readability can be applied 



on top of these methods to further reduce power consumption. 
Also, although these studies examine either readability or 
subjective satisfaction, none of them attempt to draw a 
correlation between the two. [20, 11] are concerned with 
improving the display's optics in ambient light; however, any 
system with a dimmable backlight will still be able to apply 
our findings on power consumption and readability. 

6. CONCLUSION 
In this work, we ran a series of user studies to analyze 

subjective user satisfaction and objective readability metrics 
on mobile LCD displays in a variety of ambient lighting envi
ronments. From these studies, we were able to find a strong 
correlation between our subjective satisfaction and objective 
readability metrics; this is important when attempting to 
design a system which is aware of the user's satisfaction with 
a system, but doesn't interrupt the user for subjective ratings. 
We also found that the adaptive brightness systems currently 
in use are not necessarily well-tuned. Furthermore, from this 
data, we found that many brightness throttling systems do 
not consider the impact on the user when they are active. By 
taking this impact into consideration, we were able to create 
a display power throttling system which achieves a 21.5% 
higher average readability and user satisfaction at a given 
level of power reduction over a period of time compared to a 
naive solution. 

Having an understanding of the impact that a user-facing 
system decision has on the user is important, as this makes 
it possible for the system to optimize these power decisions 
along with the user's satisfaction level. However, the best 
way to get this information is by directly asking the user. 
Unfortunately, this is an invasive process which doesn't fit 
well in the user's work flow. In addition, subjective ratings 
can be noisy. Because of this, devising objective models 
which are closely correlated to subjective satisfaction met
rics is a promising way of including the user in the system 
optimization loop, allowing for the system to achieve its own 
power and performance requirements while maximizing the 
user's satisfaction in the process. 
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