
Beaver: Engineering an Efficient SMT Solver
for Bit-Vector Arithmetic

Susmit Jha, Rhishikesh Limaye, and Sanjit A. Seshia

EECS Department, UC Berkeley
{jha,rhishi,sseshia}@eecs.berkeley.edu

Abstract. We present the key ideas in the design and implementation of Beaver,
an SMT solver for quantifier-free finite-precision bit-vector logic (QF BV). Beaver
uses an eager approach, encoding the original SMT problem into a Boolean satis-
fiability (SAT) problem using a series of word-level and bit-level transformations.
In this paper, we describe the most effective transformations, such as propagating
constants and equalities at the word-level, and using and-inverter graph rewriting
techniques at the bit-level. We highlight implementation details of these transfor-
mations that distinguishes Beaver from other solvers. We present an experimental
analysis of the effectiveness of Beaver’s techniques on both hardware and soft-
ware benchmarks with a selection of back-end SAT solvers.
Beaver is an open-source tool implemented in Ocaml, usable with any back-end
SAT engine, and has a well-documented extensible code base that can be used to
experiment with new algorithms and techniques.

1 Introduction
Decision procedures for quantifier-free fragments of first-order theories, also known as
satisfiability modulo theories (SMT) solvers, find widespread use in hardware and soft-
ware verification. Of the many first-order theories for which SMT solvers are available,
one of the most useful is the theory of finite-precision bit-vector arithmetic, abbreviated
as QF BV [14]. This theory is useful for reasoning about low-level system descriptions
in languages such as C and Verilog which use finite-precision integer arithmetic and
bit-wise operations on bit-vectors. Recently, there has been a resurgence of work on
new QF BV SMT solvers such as BAT [10], Boolector [3], MathSAT [4], Spear [9],
STP [8], UCLID [5] and Z3 [6].

In this article, we describe the design and implementation of BEAVER, a new open-
source SMT solver for QF BV that placed third in SMTCOMP’08. The novelty in
Beaver is in its application-driven engineering of a small set of simplification methods
that yield high performance. This set is: online forward/backward constant and equality
propagation using event queues, offline optimization of Boolean circuit templates for
operators, and the use of and-inverter graph (AIG) as back-end to perform problem spe-
cific bit-level simplifications. Additionally, we have done a systematic study of different
Boolean encoding techniques for non-linear operations.

The goal in creating BEAVER was to engineer an efficient and extensible SMT solver
around a small core of word-level and bit-level simplification techniques. One aim in
writing this article is to succinctly describe the techniques we employed and evaluate
them on the SMT-LIB benchmarks. We believe this paper could be useful to both users
and designers of solvers. For example, our experiments suggest that online equality
propagation is critical to software benchmarks while Boolean rewrites are needed for
hardware benchmarks. For developers of SMT and SAT solvers, we present a compari-
son of Beaver with different SAT solvers as back-end. Our main observation is that the

only available non-clausal SAT solver NFLSAT [11] performs significantly better than
other SAT solvers.

We do not attempt to make a comprehensive survey and comparison of solvers here;
the interested reader can find a survey of current and past bit-vector solvers in recent
articles (e.g. [5]), our technical report [17], and the SMTCOMP’08 results [13]. Our
focus is on improving the understanding of what makes a good SMT solver for QF BV,
and on identifying features of solvers and benchmarks that could be of interest to the
SAT, SMT, and user community.
2 Approach
BEAVER is a satisfiability solver for formulas in the quantifier-free fragment of the the-
ory of bit-vector arithmetic (QF BV). For lack of space, we omit a detailed presentation
of the logic and instead direct the reader to the SMT-LIB website [14] for the detailed
syntax and semantics.

BEAVER operates by performing a series of rewrites and simplifications that trans-
form the starting bit-vector arithmetic formula into a Boolean circuit and then into a
Boolean satisfiability (SAT) problem. This approach is termed the eager approach to
SMT solving [1]. A major design decision was to be able to use any off-the-shelf SAT
solver so as to benefit from the continuing improvements in SAT solving. BEAVER can
generate models for satisfiable formulas.

The transformations employed by BEAVER are guided by the following observa-
tions about characteristics of formulas generated in verification and testing.
• Software verification and testing: Formulas generated during program analysis are

typically queries about the feasibility of individual program paths. They tend to be
conjunctions of atomic constraints generated from an intermediate representation
such as static single assignment (SSA). There are often multiple variables in the for-
mula representing values of the same program variable. Linear constraints abound,
and they tend to be mostly equalities.
Thus, a major characteristic of software benchmarks tends to be the presence of many
redundant variables, a simple Boolean structure comprising mostly of conjunctions,
and an abundance of equalities amongst the atomic constraints.

• Hardware verification: SMT formulas generated in hardware verification arise in
bounded model checking (BMC), equivalence checking, and simulation checking.
These formulas tend to have a complicated Boolean structure, with several alterna-
tions of conjunctions and disjunctions. Many of the variables are Boolean. However,
there are often several syntactically different sub-formulas which are nevertheless
logically equivalent. These arise from structural repetitions in the formula, such as
across multiple time-frames in BMC, or in the intrinsic similarities between two
slightly different copies of a circuit being checked for equivalence. Word-level and
bit-level rewrite rules are crucial to simplifying the formula and identifying equiva-
lences. Thus, efficient solving of formulas from hardware verification requires word-
level and bit-level simplification techniques.

• Non-linear operations: Non-linear operations such as multiplication and division are
known to be difficult for SAT solvers. While many formulas arising in verification
and testing do not contain these operators (or in a manner that makes the problem
hard), every SMT solver needs efficient techniques to deal with hard non-linear con-
straints when they do arise.

How BEAVER works: BEAVER performs a sequence of simplifications starting from
the original bit-vector formula Fbv and ending in a Boolean formula Fbool which is

handed off to an external SAT engine. Currently BEAVER supports both clausal and
non-clausal SAT solvers.

We briefly sketch the transformations performed by BEAVER below. (The first three
bit-vector transformations are not necessarily performed in the sequence listed below).
They transform Fbv to an intermediate Boolean formula F ′

bool. Bit-level simplifications
are then performed on F ′

bool to yield the final formula Fbool.
• Event-driven constraint propagation: BEAVER uses an online event-driven approach

to propagate constants and equality constraints through the formula in order to sim-
plify it. In particular, a simple form of constraint that appears in many software
benchmarks is an equality that uses a fresh variable to name an expression, often
of constant value. Both backward (from root of the formula to its leaves) and for-
ward constraint propagation are performed. The event-driven approach, similar to
event-driven simulation, allows the simplifications to be performed as a succession
of rewrite events. Potential applications of a constant/constraint propagation rewrite
are put in a queue and execution of each rewrite rule can potentially generate more
avenues of rewriting which are also queued. The rewriting continues till the queue is
empty and no further constant/constraint propagation is possible. This propagation
is in addition to preliminary simplifications using structural hashing.

• Bit-vector rewrite rules: BEAVER also uses a small set of bit-vector rewrite rules to
simplify the formula. These interact with the above step by creating new opportu-
nities for constraint propagation. For the current SMTCOMP benchmark suite, an
example of a very useful rewrite is the removal of redundant extractions from bit-
vectors that enables methods such as constraint propagation to further simplify the
formula.

• Non-linear operations: In BEAVER, we have experimented with a range of tech-
niques to translate non-linear arithmetic operations such as multiplication, division,
and remainder into SAT. These include: (1) Using magic numbers when one of the
arguments is a constant [19]; (2) decomposing a large bit-width operation into a set
of smaller bit-width operations by computing residues modulo a set of primes and
using the Chinese remainder theorem; and (3) bit-blasting using standard arithmetic
circuits for multiplication by expressing a÷b as q where a = q∗b + r ∧ r < b and ∗

and + must not overflow.
Of the three approaches, our experience has been that the third approach performs
the best on most of the current SMT-LIB benchmarks. Thus, while all three options
are available, we set the third approach to be the default option.

• Boolean simplifications — offline and online: After performing the above bit-vector
simplifications, the resulting formula F ′

bv is encoded into a Boolean formula F ′

bool
that is represented as an And-Inverter Graph (AIG). The translation is straightfor-
ward except for one novelty: we pre-synthesize optimized netlists from Verilog for
different arithmetic operators for various bit-widths. These pre-synthesized template
circuits are stored as AIGs and can be optimized offline using logic synthesis tools
such as the ABC logic synthesis engine [16]. We explore the impact of logic opti-
mization on template circuits in Section 3. When the solver runs on a specific bench-
mark, it can further perform bit-level rewrites on the AIG obtained after all operators
have been instantiated with template circuits. The resulting formula is Fbool.
Fbool can be solved using clausal (CNF-based) or non-clausal SAT engines. We have
experimented with different CNF generation options from the ABC engine and also
with a non-clausal SAT solver. Our results are presented in Section 3.

A more detailed description of the above transformations with examples is available
from the BEAVER website listed below. BEAVER is implemented in OCaml (linked with
the ABC library) and uses an external SAT engine. A source-code release of BEAVER
has been publicly available since July 2008; the latest version can be downloaded from
the URL http : //uclid.eecs.berkeley.edu/beaver/.

3 Experimental Evaluation
Setup Experiments were conducted with a selection of benchmarks from all families
in the QF BV section of the publicly available SMT-LIB benchmark suite [15]. A clus-
ter of machines was used for experiments, with each workstation having an Intel(R)
Xeon(TM) 3.00 GHz CPU, 3 GB RAM, and running 64-bit Linux 2.6.18. We enforced
a memory limit of 1 GB on all runs and the timeout was set to 1 hour. A complete set
of experimental data is available at the BEAVER website.
Impact of SAT solvers First, we evaluate the impact of the choice of SAT solver on
performance. We used the default setting of bit-vector transformations and Tseitin’s
encoding to CNF. Five SAT solvers were compared: Picosat v. 846 compiled in opti-
mized mode [2], Minisat 2.0 [7], Rsat [12], ABC’s version of Minisat 1.14 [16], and
NFLSAT [11]. Of the five, NFLSAT is the only non-clausal SAT solver.

Figure 1 summarizes the comparison of the five SAT solvers. From Fig. 1(a), we
can see that NFLSAT exhibits the smallest aggregate run-time over all benchmarks.
Fig. 1(b) compares solvers in terms of the degree of speed-up obtained. We see that
NFLSAT is the best performing SAT engine, achieving speed-ups by large factors, in-
dicating that the use of a non-clausal SAT solver might be beneficial for bit-vector
formulas.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 500 1000 1500 2000 2500 3000

Cu
m

ul
at

ive
 R

un
tim

e
(s

ec
on

ds
)

Number of Benchmarks

Comparing different SAT solvers used with Beaver

ABC-Minisat
Minisat
NFLsat
PicoSat

Rsat

(a)

2000

1500

1000

500

0

500

1000

1500

2000

NFL vs Rsat

NFL vs Pico

NFL vs Mini

NFL vs ABC

Rsat vs Pico

Rsat vs Mini

Rsat vs ABC

Pico vs Mini

Pico vs ABC

Mini vs ABC

Nu
m

be
r o

f b
en

ch
m

ar
ks

Comparison of SAT solvers used with Beaver

ordered-bottom-to-top
>100x-slow

100-10x-slow
10-5x-slow
5-2x-slow
2-1x-slow

2-1x-fast
5-2x-fast

10-5x-fast
100-10x-fast

>100x-fast

(b)

Fig. 1. Comparing five SAT solvers. (a) Plots of cumulative run-time over all benchmarks; (b)
Comparing speed-ups. Each stacked bar compares two SAT solvers by counting the number of
benchmarks with various ranges of speed-ups. Different colors represent different range of speed-
ups (100x,20x,5x,2x,1x). The portion of a bar above 0 represents the number of benchmarks
where the first solver is faster than the second solver and the part below represents benchmarks
on which the first is slower than the second.

Detailed pair-wise comparisons of SAT engines have also been performed; however,
for lack of space, we omit these here and refer the reader to our technical report [17]. We

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

Ru
nt

im
e

wi
th

ou
t p

ro
pa

ga
tio

n
(s

ec
on

ds
)

Runtime with propagation (seconds)

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

Ru
nt

im
e

wi
th

ou
t t

em
pl

at
e

sim
pl

ific
at

io
n

(s
ec

on
ds

)

Runtime with template simplification (seconds)

(b)

Fig. 2. (a) Impact of constant/equality constraint propagation; (b) Impact of template op-
timization. All scatterplots use log-scale axes. NFLSAT was the back-end SAT solver. For (a),
the path feasibility queries are marked with ×; for (b), satisfiable benchmarks are marked with ×
and unsatisfiable benchmarks with ◦.

have observed that the relative performance of SAT solvers can depend heavily on the
benchmark family. For example, in comparing NFLSAT and Minisat 2.0, we found a set
of benchmarks where the NFLSAT run-time is fairly stable between 1 and 20 sec. while
the Minisat run-time goes from 10 to above 1000 sec. These benchmarks are almost all
from the spear family, where formulas are verification conditions with rich Boolean
structure and several kinds of arithmetic operations. On the other hand, there is also a
set of benchmarks on which Minisat’s run-time stays under 0.1 sec while NFLSAT’s
run-time ranges from 1 to 100 seconds. These benchmarks were from mostly from
the catchconv family, with a few crafted benchmarks. Since the catchconv family
comprises path feasibility queries that are conjunctions of relatively simple constraints
(mostly equalities), it appears that the Boolean structure and form of atomic constraints
could determine whether non-clausal solving is beneficial.
Impact of word-level simplifications Figure 2(a) shows the impact of constraint prop-
agation. Overall, constraint propagation helps, as can be seen by the big cluster of
benchmarks above the diagonal. On a closer examination of the data, we noticed that all
path feasibility queries (catchconv) benchmarks (indicated in plot using ×) benefited
greatly from the use of constraint propagation, with a typical speed-up for the solver of
5-100X on these formulas.
Impact of circuit synthesis techniques We evaluated two CNF generation techniques
available in ABC – 1) standard Tseitin encoding, with some minimal optimizations like
detection of multi-input ANDs, ORs and muxes, and 2) technology mapping based CNF
generation [18], which uses optimization techniques commonly found in the technol-
ogy mapping phase of logic synthesis to produce more compact CNF. A plot comparing
these two techniques is given in our technical report [17]. The TM-based CNF gener-
ation significantly reduced the SAT run-time for the spear benchmarks, but actually
increased the run-time for the brummayerbiere family of benchmarks. For other SAT

solvers, there wasn’t an appreciable difference. Also, neither CNF generation technique
improved much on NFLSAT.

The use of logic optimization techniques on the template circuits for arithmetic op-
erators was beneficial in general, as can be seen from Fig. 2(b). The speed-up obtained
from optimizing the templates was especially large for the spear benchmarks. We hy-
pothesize that this is because that family of benchmarks has a wide variety of arithmetic
operations, including several non-linear operations, which are the ones for which tem-
plate optimization helps the most.
Discussion From our analysis of the different options in BEAVER, it seems that differ-
ent settings of options will benefit different families, which indicates that some form
of family-specific auto-tuning might be worth performing. It would also be worth fur-
ther investigating the better performance of the non-clausal solver NFLSAT over the
CNF-based solvers used in this study.
Acknowledgments. This work was supported in part by SRC contract 1355.001, NSF
grants CNS-0644436, CNS-0627734, and CCF-0613997, and an Alfred P. Sloan Re-
search Fellowship.
References
1. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. In

A. Biere, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume 4, chap-
ter 8. IOS Press, 2009.

2. A. Biere. PicoSAT essentials. JSAT, 4:75–97, 2008.
3. R. D. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors and

arrays. In Proc. of TACAS, March 2009.
4. R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, Z. Hanna, A. Nadel, A. Palti, and R. Se-

bastiani. A lazy and layered SMT(BV) solver for hard industrial verification problems. In
CAV 2007, LNCS 4590, pages 547–560.

5. R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and B. Brady. Deciding
bit-vector arithmetic with abstraction. In TACAS 2007, LNCS 4424, pages 358–372.

6. L. de Moura and N. Bjorner. Z3: An efficient SMT solver. In Proc. TACAS, LNCS 4963,
2008.

7. N. Een and N. Sorensson. An extensible SAT-solver. In Proc. SAT, LNCS 2919, 2003.
8. V. Ganesh and D. Dill. A decision procedure for bit-vectors and arrays. In CAV 2007, LNCS

4590, pages 519–531.
9. F. Hutter, D. Babic, H. H. Hoos, and A. J. Hu. Boosting verification by automatic tuning of

decision procedures. In FMCAD 2007, pages 27–34. IEEE Press.
10. P. Manolis, S. K. Srinivasan and D. Vroon. BAT Bit-level Analysis tool. In CAV 2007, pages

303-306.
11. H. Jain and E. M. Clarke. Efficient SAT solving for Non-Clausal Formulas using DPLL,

Graphs and Watched Cuts. 46th Design Automation Conference, 2009.
12. K. Pipatsrisawat and A. Darwiche. Rsat 2.0: Sat solver description. Technical Report D–153,

Automated Reasoning Group, Computer Science Department, UCLA, 2007.
13. SMT-COMP’08 results. Available at http : //www.smtexec.org/exec/?jobs = 311
14. SMT-LIB QF BV logic. Available at http : //goedel.cs.uiowa.edu/smtlib/logics/QF BV.smt
15. SMT-LIB QF BV benchmarks. Available at http : //combination.cs.uiowa.edu/

smtlib/benchmarks.html
16. Berkeley Logic Synthesis and Verification Group. ABC: A system for sequential synthesis

and verification, release 70930. http : //www.eecs.berkeley.edu/˜alanmi/abc/.
17. S. Jha, R. Limaye, and S. A. Seshia. Beaver: Engineering an Efficient SMT Solver for

Bit-Vector Arithmetic. Technical Report, EECS Department, UC Berkeley, 2009.
18. N. Een, A. Mishchenko, and N. Sorensson. Applying logic synthesis to speedup SAT. Proc.

SAT 2007, LNCS 4501, pages 272–286.
19. H. S. Warren Jr. Hacker’s Delight. Addison Wesley, 2003.

