
Logic Extraction for Explainable AI

Susmit Jha

Computer Science Laboratory
SRI International

susmit.jha@sri.com

Abstract. In this paper, we investigate logic extraction as a means for
building explainable AI. Blackbox AI system is used as an oracle that can
label inputs with positive or negative label depending on its decision. We
formulate generating explanations as the problem of learning Boolean
formulae from examples obtained by actively querying such an oracle.
This problem has exponential worst-case complexity in the general case
as well as for many restrictions. In this paper, we focus on learning
sparse Boolean formulae which depend on only a small (but unknown)
subset of the overall vocabulary of atomic propositions. We propose two
algorithms - first, based on binary search in the Hamming space, and the
second, based on random walk on the Boolean hypercube, to learn these
sparse Boolean formulae with a given confidence. This assumption of
sparsity is motivated by the problem of mining explanations for decisions
made by artificially intelligent (AI) algorithms, where the explanation of
individual decisions may depend on a small but unknown subset of all the
inputs to the algorithm. We demonstrate the use of these algorithms in
automatically generating explanations of these decisions. We show that
the number of examples needed for both proposed algorithms only grows
logarithmically with the size of the vocabulary of atomic propositions.
We illustrate the practical effectiveness of our approach on a diverse set
of case studies. In this paper, we summarize the results presented in our
recent work [7, 5].

1 Introduction

The rapid integration of intelligent and autonomous agents into our industrial
and social infrastructure has created an immediate need for establishing trust
between these agents and their human users. Decision-making and planning al-
gorithms central to the operation of these systems currently lack the ability
to explain the choices and decisions that they make. This is particularly prob-
lematic when the results returned by these algorithms are counter-intuitive. It
is important that intelligent agents become capable of responding to inquiries
from human users. For example, when riding in an autonomous taxi, we might
expect to query the AI driver using questions similar to those we would ask a
human driver, such as “why did we not take the Bay Bridge”, and receive a re-
sponse such as “there is too much traffic on the bridge” or “there is an accident
on the ramp leading to the bridge or in the middle lane of the bridge.” These

2 Susmit Jha

explanations are essentially formulae in propositional logic formed by combining
the atomic propositions corresponding to the user-observable system and the
environment states using Boolean connectives.

Even though the decisions of intelligent agents are the consequence of al-
gorithmic processing of perceived system and environment states, the straight-
forward approach of reviewing this processing is not practical. There are three
key reasons for this. First, AI algorithms use internal states and intermediate
variables to make decisions which may not be observable or interpretable by a
typical user. For example, reviewing decisions made by the A* planning algo-
rithm [12] could reveal that a particular state was never considered in the priority
queue. But this is not human-interpretable, because a user may not be familiar
with the details of how A* works. Second, the efficiency and effectiveness of many
AI algorithms relies on their ability to intelligently search for optimal decisions
without deducing information not needed to accomplish the task, but some user
inquiries may require information that was not inferred during the original exe-
cution of the algorithm. For example, a state may never be included in the queue
of a heuristic search algorithm like A* because either it is unreachable or it has
very high cost. Thus, the ability to explain why this state is not on the com-
puted path will require additional effort. Third, artificial intelligence is often
a composition of numerous machine learning and decision-making algorithms,
and explicitly modeling each one of these algorithms is not practical. Instead,
we need a technique which can treat these algorithms as black-box oracles, and
obtain explanations by observing their output on selected inputs.

These observations motivate us to formulate the problem of generating ex-
planations as an oracle-guided learning of Boolean formula where the AI algo-
rithm is queried multiple times on carefully selected inputs to generate examples,
which in turn are used to learn the explanation. Given the observable system
and environment states, S and E respectively, typical explanations depend on
only a small subset of elements in the overall vocabulary V = S ∪ E, that is,
if the set of state variables on which the explanation φ depends, is denoted by
support(φ) ⊆ V , then |support(φ)| << |V | (sparse). The number of examples
needed to learn a Boolean formula is exponential in the size of the vocabulary
in the general case [11, 10, 3]. Our approach builds on recent advances in formal
synthesis [8, 4, 9].

We summarize the following recent contributions made towards logic extrac-
tion for explainable AI. We formulate the problem of finding explanations for
decision-making AI algorithms as the problem of learning sparse Boolean for-
mulae. We present two algorithms to learn sparse Boolean formula where the
size of required examples grows logarithmically (in contrast to exponentially in
the general case) with the size of the overall vocabulary. We theoretically and
empirically compare these algorithms. The first algorithm is based on a binary
search in the Hamming space first described in our earlier work [5]. The second
algorithm is based on random walk in the Boolean hypercube reported in our
earlier work [7]. We present case studies used to demonstrate the effectiveness
of our approach.

Explainable AI 3

2 Motivating Example

We describe a motivating example to illustrate the problem of providing human-
interpretable explanations for the results of an AI algorithm. We consider the
A* planning algorithm [12], which enjoys widespread use in path and motion
planning due to its optimality and efficiency. Given a description of the state
space and transitions between states as a weighted graph where weights are used
to encode costs such as distance and time, A* starts from a specific node in the
graph and constructs a tree of paths starting from that node, expanding paths
in a best-first fashion until one of them reaches the predetermined goal node.
At each iteration, A* determines which of its partial paths is most promising
and should be expanded. This decision is based on the estimate of the cost-
to-go to the goal node. Specifically, A* selects an intermediate node n that
minimizes totalCost(n) = partialCost(n) + guessCost(n), where totalCost

is the estimated total cost of the path that includes node n, obtained as the sum
of the cost (partialCost(n)) of reaching n from the initial node, and a heuristic
estimate of the cost (guessCost(n)) of reaching the goal from n . The heuristic
function guessCost is problem-specific: e.g., when searching for the shortest
path on a Manhattan grid with obstacles, a good guessCost is the straight
line distance from the node n to the final destination. Typical implementations
of A* use a priority queue to perform the repeated selection of intermediate
nodes. This priority queue is known as the open set or fringe. At each step of the
algorithm, the node with the lowest totalCost value is removed from the queue,
and “expanded”, This means that the partialCost values of its neighbors are
updated accordingly based on whether going through n improves them, and
these neighbors are added to the queue. The algorithm continues until some
goal node has the minimum cost value, totalCost, in the queue, or until the
queue is empty (in which case no plan exists). The totalCost value of the goal
node is then the cost of the optimal path. We refer readers to [12] for a detailed
description of A*. In rest of this section, we illustrate the need for providing
explanations using a simple example map and application of A* on it to find the
shortest path.

Figure 1 depicts the result of running A* on a 50×50 grid, where cells that
form part of an obstacle are colored red. The input map (Figure 1 (a)) shows
the obstacles and free space. A* is run to find a path from lower right corner to
upper left corner. The output map is shown in Figure 1 (b).

Consider the three cells X,Y,Z marked in the output of A* in Figure 1 (b)
and the following inquiries on the optimal path discovered by A*:

– Why was the cell Y not selected for the optimal path? Given the output and
logged internal states of the A* algorithm, we know that Y was considered
as a candidate cell but discarded due to non-optimal cost.

– Why was the cell X not selected for the optimal path? If we logged the internal
states of the A* algorithm, we would find that X was not even considered
as a candidate and it never entered the priority queue of the A* algorithm.
But this is not a useful explanation because a non-expert user cannot be

4 Susmit Jha

Fig. 1: (a) Input map to A* (b) Output showing final path and internal states
of A*. Cells on the computed optimal path are colored dark blue. Cells which
entered A*’s priority queue are colored light cyan, and those cells that never

entered the queue are colored yellow.

expected to understand the concept of a priority queue, or the details of
how A* works.

– Why was the cell Z not selected for the optimal path? The cell Z was also
never inserted into the priority queue and hence, it was never a candidate to
be selected on the optimal path similar to cell X. When responding to a user
query about why X and Z were not selected in the optimal path, we cannot
differentiate between the two even if all the internal decisions and states of
the A* algorithm were logged. So, we cannot provide the intuitively expected
explanation that Z is not reachable due to obstacles, while X is reachable
but has higher cost than the cells that were considered.

This example scenario illustrates the need for new information to provide ex-
planation in addition to the usual deduction by AI algorithm while solving the
original decision making problem.

3 Problem Definition

A decision-making AI algorithm Alg can be modelled as a function that com-
putes the values of output variables out given input variables in, that is,

Alg : in→ out

The outputs are the decision variables, while the inputs include the environment
and system states as observed by the system through the perception pipeline.
While the decision and state variables can be continuous and real valued, the
inquiries and explanations are framed using predicates over these variables, such

Explainable AI 5

as comparison of a variable to some threshold. These predicates can either be
directly provided by the user or the developer of the AI system, or they can be
automatically extracted from the implementation of the AI system by includ-
ing predicates that appear in the control flow of the AI system. These must be
predicates over the input and output variables, that is, in and out, which are un-
derstood by the users. Our approach exploits the sparsity of Boolean formula for
learning the explanations and so, the vocabulary can include all possible predi-
cates and variables that might be useful for explaining AI decisions. We propose
methods to efficiently find relevant variables where these methods only depend
logarithmically on the size of the vocabulary. This ensures that the definition
of vocabulary can conveniently include all possible variables, and our approach
can automatically find the relevant subset and synthesize the corresponding ex-
planation.

We denote the vocabulary of atomic predicates used in the inquiry from the
user and the provided explanation from the system by V. We can separate the
vocabulary V into two subsets: VQ used to formulate the user inquiry and VR
used to provide explanations.

VQ = {q1, q2, . . . qm},VR = {r1, r2, . . . rn} where qi, ri : in ∪ out→ Bool

Intuitively, V is the shared vocabulary that describes the interface of the AI
algorithm and is understood by the human-user. For example, the inquiry vo-
cabulary for a planning agent may include propositions denoting selection of a
waypoint in the path, and the explanation vocabulary may include propositions
denoting presence of obstacles on a map.

An inquiry φQ from the user is an observation about the output (decision)
of the algorithm, and can be formulated as a Boolean combination of predicates
in the vocabulary VQ. Hence, we can denote it as φQ(VQ) where the predicates
in VQ are over the set in ∪ out, and the corresponding grammar is:

φQ := φQ ∧ φQ | φQ ∨ φQ |¬φQ | qi where qi ∈ VQ
While conjunction and negation are sufficient to express any Boolean combina-
tion, we include disjunction and implication for succinctness of inquiries. Sim-
ilarly, the response φR(VR) is a Boolean combination of the predicates in the
vocabulary VR where the predicates in VR are over the set in ∪ out, and the
corresponding grammar is:

φR := φR ∧ φR | φR ∨ φR | ¬φR | ri where ri ∈ VR

Definition 1. Given an AI algorithm Alg and an inquiry φQ(VQ), φR(VR) is a
necessary and sufficient explanation when φR(VR) ⇐⇒ φQ(VQ) where VR,VQ
are predicates over in∪ out as explained earlier, and out = Alg(in). φR(VR) is
a sufficient explanation when φR(VR)⇒ φQ(VQ).

If the algorithm out = Alg(in) could be modeled explicitly in appropriate
logic, then the above definition could be used to generate explanations for a given
inquiry using techniques such as satisfiability solving. However, such an explicit

6 Susmit Jha

modeling of these algorithms is currently outside the scope of existing logical
deduction frameworks, and is impractical for large and complicated AI systems
even from the standpoint of the associated modeling effort. The AI algorithm Alg

is available as an executable function; hence, it can be used as an oracle that can
provide an outputs for any given input. This motivates oracle-guided learning of
the explanation from examples using the notion of confidence associated with it.

Definition 2. Given an AI algorithm Alg and an inquiry φQ(VQ), φR(VR)
is a necessary and sufficient explanation with probabilistic confidence κ when
Pr(φR(VR) ⇐⇒ φQ(VQ)) ≥ κ, where VR,VQ are predicates over in ∪ out as
explained earlier, out = Alg(in) and 0 ≤ κ ≤ 1. The probability of satisfaction
of φR(VR) ⇐⇒ φQ(VQ) is computed using uniform distribution over the vari-
ables in V. This uniform distribution is not an assumption over the context in
which an AI algorithm Alg is used. This uniform distribution is only used to
estimate the probability of finding the correct explanation. Similarly, φR(in) is
a sufficient explanation with confidence κ when Pr(φR(VR)⇒ φQ(VQ)) ≥ κ.

The oracle used to learn the explanation uses the AI algorithm. It runs the
AI algorithm on a given input ini to generate the decision output outi, and
then marks the input as a positive example if φQ(outi) is true, that is, the
inquiry property holds on the output. It marks the input as a negative example
if φQ(outi) is not true. We call this an introspection oracle which marks each
input as either positive or negative.

Definition 3. An introspection oracle OφQ,Alg for a given algorithm Alg and
inquiry φQ takes an input ini and maps it to a positive or negative label, that is,
OφQ,Alg : in→ {⊕,	}.

OφQ,Alg(ini) = ⊕ if φQ(VQ(outi)) and OφQ,Alg(ini) = 	 if ¬φQ(VQ(outi)), where

outi = Alg(ini), and VQ(outi) is the evaluation of the predicates in VQ on outi

We now formally define the problem of learning Boolean formula with spec-
ified confidence κ given an oracle that labels the examples.

Definition 4. The problem of oracle-guided learning of Boolean formula from
examples is to identify (with confidence κ) the target Boolean function φ over
a set of atomic propositions V by querying an oracle O that labels each input
ini (which is an assignment to all variables in V) as positive or negative {⊕,	}
depending on whether φ(ini) holds or not, respectively.

We make the following observations which relates the problem of finding
explanations for decisions made by AI algorithms to the problem of learning
Boolean formula.

Observation 1 The problem of generating explanation φR for the AI algorithm
Alg and an inquiry φQ is equivalent to the problem of oracle-guided learning of
Boolean formula φR using oracle OφQ,Alg as described in Definition 4.

Explainable AI 7

φ[ri] denotes the restriction of the Boolean formula φ by setting ri to true

in φ and φ[ri] denotes the restriction of φ by setting ri to false. A predicate ri
is in the support of the Boolean formula φ, that is, ri ∈ support(φ) if and only
if φ[ri] 6= φ[ri].

Observation 2 The explanation φR over a vocabulary of atoms VR for the
AI algorithm Alg and a user inquiry φQ is a sparse Boolean formula, that is,
|support(φR)| << |VR|.

These observations motivate the following problem definition for learning
sparse Boolean formula.

Definition 5. Boolean function φ is called k-sparse if |support(φR)| ≤ k. The
problem of oracle-guided learning of k-sparse Boolean formula from examples is
to identify (with confidence κ) the target k-sparse Boolean function φ over a
set of atomic propositions V by querying an oracle O that labels each input ini
(which is an assignment to all variables in V) as positive or negative {⊕,	}
depending on whether φ(ini) holds or not, respectively.

The explanation of decisions made by an AI algorithm can be generated by
solving the problem of oracle-guided learning of k-sparse Boolean formula.

4 Learning Sparse Boolean Formula

Recall that the vocabulary of explanation is VR = {r1, r2, . . . , rn}. Given any two
inputs in1 and in2, we define the difference between them as follows: diff(in1, in2)
= {i | ri(in1) 6= ri(in2)}. Next, we define a distance metric d on inputs as the
size of the difference set, that is, d(in1, in2) = |diff(in1, in2)|. d(in1, in2) is the
Hamming distance between the n-length vectors that record the evaluation of
the atomic predicates ri in VR. We say that two inputs in1, in2 are neighbours if
and only if d(in1, in2) = 1. We also define a partial order � on inputs as follows:
in1 � in2 iff ri(in1)⇒ ri(in2) for all 1 ≤ i ≤ n.

Given an input in and a set J ⊆ {1, 2, . . . , n}, a random J-preserving mu-
tation of in, denoted mutset(in, J), is defined as: mutset(in, J) = {in′|in′ ∈
in and rj(in

′) = rj(in) for all j ∈ J}.
A random walk walk over the Boolean hypercube starts with a random initial

input in0. The input at iteration t+1 is int+1 = walk(int) and int+1 is obtained
by randomly sampling an index j from [1, n] with uniform probability and then
flipping the variable at index j of int with probability 1/2.

p(walk(int) = in | int) =
1

2
if in = int =

1

2n
if d(in, int) = 1

Learning Based on Binary Search in Hamming Space: We begin
with two random inputs in1, in2 on which the oracle OφQ,Alg returns different
labels, for example, it returns positive on in1 and negative on in2 without loss
of generality. Finding such in1, in2 can be done by sampling the inputs and

8 Susmit Jha

querying the oracle until two inputs disagree on the outputs. The more samples
we find without getting a pair that disagree on the label, the more likely it is
that the Boolean formula being used by the oracle to label inputs is a constant
(either true or false).

We can define sample(OφQ,Alg, in, J, κ) that samples m = 2k ln(1/(1 − κ))
inputs from the set mutset(in, J) and generates two inputs on which the oracle
OφQ,Alg disagrees and produces different outputs. If it cannot find such a pair of
inputs, it returns ⊥. Lemma 1 justifies why the size m of the samples is sufficient
to achieve the probabilistic confidence κ.

Lemma 1. If m random samples in1, in2, . . . , inm from mutset(in, J) produce
the same output as input ‘in’ for the oracle OφQ,Alg where φR is k-sparse, then
the probability that all mutations in′ ∈ mutset(in, J) produce the same output
(that is, the oracle is a constant function over mutset(in, J)) is at least κ, where
m = 2k ln(1/(1− κ)).

If sample(OφQ,Alg, in, J, κ) returns ⊥, we have found the constant function.
Otherwise, it returns two inputs in1, in2 on which the oracle disagrees. We find
J = diff(in1, in2) = {i1, i2, . . . , il} on which the inputs differ with respect to
the vocabulary VR = {r1, r2, . . . , rn}. We partition J into two subsets J1 =
{i1, i2, . . . , ibl/2c} and J2 = {ibl/2c+1, ibl/2c+2, . . . , il}. The two sets J1 and J2
differ in size by at most 1. The set of inputs that are halfway between the two
inputs w.r.t the Hamming distance metric d defined earlier is given by the set
bisect(in1, in2) defined as:

bisect(in1, in2) = {in′| ∀j ∈ J1 rj(in′) iff rj(in1),∀j ∈ J2 rj(in′) iff rj(in2)}

Satisfiability solvers can be used to generate an input in′ from bisect(in1, in2).
The oracle OφQ,Alg is run on in′ to produce the corresponding label. This label
will match either the label for the input in1 or that of the input in2. We discard
the input whose label matches in′ to produce the next pair of inputs, that is,

introspect(in1, in2) =

{
(in1, in

′) if OφQ,Alg(in
′) 6= OφQ,Alg(in2)

(in′, in2) if OφQ,Alg(in
′) 6= OφQ,Alg(in1)

where in′ ∈ bisect(in1, in2)

Starting from an initial pair of inputs on which OφQ,Alg produces different
labels, we repeat the above process, considering a new pair of inputs at each itera-
tion until we have two inputs in1, in2 that are neighbours, with diff(in1, in2, S) =
{j}. At this point, we can conclude that rj ∈ VR is in the support of the expla-
nation φR because changing the assignment of rj changes the response of the
oracle.

We add rj to the set of variables VφR
. We repeat the above process twice to

find the next relevant variable to add to the support set by setting rj to first true
and then false. This introspective search for variables in the support set VφR

is
repeated till we cannot find a pair of inputs in1, in2 on which the oracle produces
different outputs. This continues till the sample(OφQ,Alg, in, J, κ) returns ⊥ and

Explainable AI 9

we have found all the relevant variables with probabilistic confidence κ. This
overall algorithm for finding the support of the explanations φR with probability
κ is presented in Algorithm 1 using the oracle OφQ,Alg.

Algorithm 1 Computation of VφR
using binary search in Hamming space:

getSupport(OφQ,Alg, in, J, κ)

if sample(OφQ,Alg, in, J, κ) = ⊥ then
// The J-restricted Boolean formula is constant function with probability κ.
return {}

else
(in1, in2)⇐ sample(OφQ,Alg, in, J, κ)
while |diff(in1, in2)| 6= 1 do
in1, in2 ⇐ introspect(in1, in2)

ri is the singleton element in diff(in1, in2)
J ⇐ J ∪ {i}
return {ri} ∪ getSupport(OφQ,Alg, in1, J, κ) ∪ getSupport(OφQ,Alg, in2, J, κ)

Learning Based on Random Walk in Boolean Hypercube: The al-
gorithm for finding relevant variables using random walk in Boolean hypercube
starts with a random initial input in0. This input is a vertex in the n-dimensional
Boolean hypercube of the VR variables. The algorithm performs a random walk
from this vertex, proceeding in iteration t from the vertex int to the vertex
walk(int) = int+1. As defined earlier, walk probabilistically either chooses to
stay at the same vertex, or to move to a vertex which is 1 Hamming distance away
where the differing variable in VR is uniformly selected from the n variables. This
random walk is performed for at most L(k′, κ) = 2k

′
(2k′2)(1 + log k′) log(k′/κ)

steps when searching for k′ relevant variables. Using results from mixing time,
we will later show that random walk of this length must either find two neigh-
boring vertices on which the oracle produces different labels or the oracle com-
putes a constant function with probabilistic confidence κ. When we find neigh-
boring vertices with different labels, we can find the single variable on which
these two inputs differ and clearly, this variable is a relevant variable since
changing its assignment changes the output of the oracle. This is repeated to
find all the relevant variables. The recursive Algorithm 2 is initially called as
getSupportRW(OφQ,Alg, in0, {}, κ, k′) with random initial input in0 and an empty
set as the so far found variables, J = {}. For learning sparse Boolean formula,
we may not know the size of the support set and so, Algorithm 2 is repeated
with k′ = 1, 2, . . . , k till we can’t find more relevant variables. We analyze the
complexity of this algorithm in Section 4, and show that the number of examples
required to find all the relevant variables is logarithmic in the size of the vocab-
ulary VR. Lemma 2 establish that L(k′, κ) = 2k

′
(2k′2)(1 + log k′) log(n/(1− κ))

is a sufficiently long random walk that the function must be constant if all the
vertices have the same label.

10 Susmit Jha

Algorithm 2 Computation of VφR
using random walk over Boolean hypercube:

getSupportRW(OφQ,Alg, in, J, κ, k
′)

t = 0
while t ≤ L(k′, κ) do
int+1 = walk(int)
if OφQ,Alg(in

t+1) 6= OφQ,Alg(in
t) then

ri is the singleton element in diff(int+1, int)
J ⇐ J ∪ {i}
return getSupportRW(OφQ,Alg, in, J, κ, k

′)
t = t + 1

return J

Lemma 2. The expected mixing time of the uniform random walk in Algo-
rithm 2 is smaller than k(1 + log k) where k = |VR| is the number of relevant
variables, that is, the expected number of steps starting from any vertex in the
hypercube, after which sampling is identical to uniform sampling from all the 2n

possible assignments is less than k(1 + log k). This is a formulation of the well
known “coupon collector’s problem” [1].

Learning Boolean formula φR with given support We adopt a tech-
nique based on the use of distinguishing inputs proposed by us in [4], and de-
scribed in [6]. The theoretical analysis and empirical evaluation of the presented
approach is described in [6] and [7]. For brevity, we state the main theoretical
result here:

Theorem 1. The overall algorithm to generate k-sparse explanation φR for a
given query φQ takes O(22k ln(n/(1 − κ))) queries to the oracle, that is, the
number of examples needed to learn the Boolean formula grows logarithmically
with the size of the vocabulary n.

5 Conclusion and Future Work

We present an algorithm to first find the support of any sparse Boolean for-
mula using two alternative methods, followed by a formal synthesis approach to
learn the target formula from examples. We demonstrate how this method can
be used to learn Boolean formulae corresponding to the explanation of decisions
made by an AI algorithm. We identify two dimensions along which our work
can be extended. First, the approach needs to be extended to non deterministic
AI systems by considering learning Boolean formula from a noisy oracle. Fur-
ther, we are working on combining this model-agnostic method for generating
explanations by interrogating the model with white-box methods for analyzing
neural networks [2]. This work is a first step towards using formal methods, par-
ticularly, formal synthesis to aid in interpretability of artificial intelligence by
automatically generating explanations of decisions made by AI algorithms.

Explainable AI 11

Acknowledgement

The author acknowledges support from the US ARL Cooperative Agreement
W911NF-17-2-0196 on Internet of Battlefield Things (IoBT) and National Sci-
ence Foundation(NSF) #1750009 and #1740079.

References

1. A. Boneh and M. Hofri. The coupon-collector problem revisiteda survey of en-
gineering problems and computational methods. Stochastic Models, 13(1):39–66,
1997.

2. S. Dutta, S. Jha, S. Sanakaranarayanan, and A. Tiwari. Output range analysis for
deep neural networks. arXiv preprint arXiv:1709.09130, 2017.

3. A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound
on the number of examples needed for learning. Information and Computation,
82(3):247 – 261, 1989.

4. S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based
program synthesis. In ICSE, pages 215–224. IEEE, 2010.

5. S. Jha, V. Raman, A. Pinto, T. Sahai, and M. Francis. On learning sparse boolean
formulae for explaining AI decisions. In NASA Formal Methods - 9th International
Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings,
pages 99–114, 2017.

6. S. Jha, V. Raman, A. Pinto, T. Sahai, and M. Francis. On learning sparse boolean
formulae for explaining ai decisions. In NASA Formal Methods Symposium, pages
99–114. Springer, 2017.

7. S. Jha, T. Sahai, V. Raman, A. Pinto, and M. Francis. Explaining ai decisions
using efficient methods for learning sparse boolean formulae. Journal of Automated
Reasoning, pages 1–21, 2018.

8. S. Jha and S. A. Seshia. A theory of formal synthesis via inductive learning. Acta
Informatica, Special Issue on Synthesis, 2016.

9. S. Jha, S. A. Seshia, and A. Tiwari. Synthesis of optimal switching logic for hybrid
systems. In EMSOFT, pages 107–116. ACM, 2011.

10. M. Kearns, M. Li, and L. Valiant. Learning boolean formulas. J. ACM, 41(6):1298–
1328, Nov. 1994.

11. M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae
and finite automata. Journal of the ACM (JACM), 41(1):67–95, 1994.

12. S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

