
Demo Abstract : Sherlock - A Tool For Verification Of Neural
Network Feedback Systems

Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, Ashish Tiwari

ABSTRACT
We present an approach for the synthesis and verification of neural

network controllers for closed loop dynamical systems, modelled

as an ordinary differential equation. Feedforward neural networks

are ubiquitous when it comes to approximating functions, espe-

cially in the machine learning literature. The proposed verification

technique tries to construct an over-approximation of the system

trajectories using a combination of tools, such as, Sherlock and

Flow*. In addition to computing reach sets, we incorporate counter

examples or bad traces into the synthesis phase of the controller

as well. We go back and forth between verification and counter

example generation until the system outputs a fully verified con-

troller, or the training fails to terminate in a neural network which

is compliant with the desired specifications. We demonstrate the

effectiveness of our approach over a suite of benchmarks ranging

from 2 to 17 variables.

CCS CONCEPTS
•Computingmethodologies→Neural networks; •Computer
systems organization → Embedded and cyber-physical sys-
tems; • Mathematics of computing → Interval arithmetic; Dif-
ferential equations;

KEYWORDS
reachability analysis, polynomial regression , neural network, hy-

brid system, flowpipe construction

ACM Reference Format:
Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, Ashish

Tiwari. 2019. Demo Abstract : Sherlock - A Tool For Verification Of Neural

Network Feedback Systems . In 22nd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC ’19), April 16–18, 2019, Montreal,
QC, Canada. ACM, New York, NY, USA, Article 4, 2 pages. https://doi.org/

10.1145/3302504.3313351

1 INTRODUCTION
Neural networks have found their way into a large of gamut of

applications, ranging from autonomous cars and unmanned aerial

vehicles to medical applications. Typically, a neural network is used

to perform tasks related to control, guidance, and classification. In

most of these applications, the neural networks are synthesized or

trained using methods like reinforcement learning, learning from

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6282-5/19/04.

https://doi.org/10.1145/3302504.3313351

ODE

Ûx = f (x, u,w)

FNN

u(jτc ) = FN (x(jτc ))

Sample

Hold

x(t)

x(jτc )

u(jτc )

w(t)

clk

Figure 1: Block diagramof a neural feedback control system.

demonstrations, or learning from a large precomputed table of con-

trol commands. Interestingly enough, most of these systems are

not correct by construction. We aim to address this by develop-

ing verification techniques that can be potentially included in the

design phase of the system. There has been an upsurge of recent

interests in proving properties about neural networks. Some of

the recent developments in this domain are, [2, 4, 5]. But, a lot

of the recent literature has been around proving assertions about

the neural networks in isolation, things like input-output bounds,

and robustness of image classification networks. In this paper, we

propose and demonstrate techniques which can verify properties

of the dynamical system given by an ODE in a closed loop with

a neural network. The approach is around building reach sets of

the system using Flow* [1] for the ODE part, and Sherlock for the

neural network part. Note that the simple amalgamation of the

intervals computed by reachability tools for the ODE and neural

network doesn’t work for any of the benchmarks we present in this

paper.

2 PROBLEM STATEMENT AND APPROACH
2.1 Problem Statement

Definition 2.1 (Neural Network). A k layer, n input, neural net-

work with N neurons per hidden layer is described by matrices:

(W0, b0), . . ., (Wk−1, bk−1), (Wk , bk ), wherein (a)W0, b0 are N × n
and N × 1 matrices denoting the weights connecting the inputs to

the first hidden layer, (b)Wi , bi for i ∈ [1,k − 1] connect layer i to
layer i + 1 and (c)Wk , bk connect the last layer k to the output.

At each neuron the output value gets computed from the input

values using the activation function σ . In general, this function is

usually some non-linear monotonic function, but here we focus on

neural networks with ”Relu” activation function σ (z) : max(z, 0).
Nevertheless, most of the techniques that we present do not in-

trinsically depend on this restriction. Semantically, a neural net-

work N with just a single output computes a continuous function

FN : Rn → R, which is a composition given by FN := Fk ◦ · · · ◦ F0,
where Fi (z) is the function computed by individual layers.

Definition 2.2. (Neural Feedback System) A Neural Feedback Sys-

tem S is tuple ⟨X ,U ,W , f (x ,u,w),N ,τc ⟩, where Ûx = f (x ,u,w),

https://doi.org/10.1145/3302504.3313351
https://doi.org/10.1145/3302504.3313351
https://doi.org/10.1145/3302504.3313351


HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, Ashish Tiwari

Figure 2: Polynomial Rule plus Interval: Red curve - neu-
ral network output around x0. Black curve - polynomial ob-
tained by regression. Blue curve - the upper and lower poly-
nomial bounds after adding the interval error I .

defines the dynamical system, and, x ,u, and w defines the state

vector, control input, and disturbance respectively. We assume, that

the state space is given by X ∈ ℜn
, the control input range is given

byU ∈ ℜm
, andW ∈ ℜl

is the set of disturbances. The controller

is assumed to act with a time period of τc .

Note, the controller acts in discrete time, and consequently, the

control signal is a piecewise constant signal. That is, u is constant

for t ∈ [qτc , (q + 1)τc ), for a positive integer q. The trajectory x(t)
of such a system, in a bounded time horizon [0,T ], with some initial

state x0, disturbance signalw : [0,T ] →W , and control signal u :

[0,T ] → U , is such that for every time interval t ∈ [qτc , (q + 1)τc ),
dx
dt (t) = f (x(t),u(t),w(t)). Note that u(t) = FN (x(qτc )), where FN
is output of the neural network. Our goal is to compute reach sets R

of a Neural Feedback System, into a time T into the future, starting

from set of initial states R′.

2.2 Approach
The key step in our approach creates a sound abstraction of the

behavior of the neural network function FN (x). Instead of treating

the NFS as a hybrid automaton, where each "mode" is determined by

a linear region of the neural network, we think of it as a continuous

feedback system. The main reason is that the number of such modes

can in principle be exponential in the number of neurons in the

network. Instead, at each time step we abstract the feedback of the

neural network by a polynomial of a given degree plus some error

bound .

Let’s assume that we are given an initial set X0 and the aim is to

compute the reach sets for N control steps into the future, which

would translate to a time horizon of T = Nτc . We use Flow* to

compute the reachable set at each time interval [(j − 1)τc , jτc ]. The
system trajectories are over-approximated by some Taylor model

flowpipes, and the continuous dynamics is updated according to

the flowpipe in the last step.

For the jth control step such that j = 1, . . . ,N , our algorithm

performs the following steps.

(1) Compute the Taylor model overapproximation X j for the

reachable set at time t = (j − 1)τc .
(2) Next, given an X j we compute an abstraction of the neural

network function FN , as a polynomial rule qj (x) plus an error
interval Jj . This approximation is sound for any input x ∈ X j
of the neural network controller, i.e., (∀x ∈ X j ).(FN (x) ∈

qj (x) + Jj ). Details of this step will be presented in the main

poster.

(3) Next, we compute the control input as uj = qj (X j ) + Jj for
the current control step by Taylor model arithmetic with the

order k .
(4) Finally, the continuous dynamics are updated to Ûx = f (x, uj ,w),

and compute Taylor model flowpipes for the current con-

trol step. The new flowpipe computed is appended to the

resulting list.

The main reason this approach is useful, for a large range of

applications, is that the dependencies among the state variables

of the system is preserved between the continuous and discrete

components. This in turn reduces the overestimation in the reach

set computation by a large margin.

2.3 Training the Neural Network
The neural networks were initially trained using the techniques

presented in [3]. The approach involves a data driven MPC method

to train neural network controllers, using simple back-propagation

like techniques. A natural extension of using the reach sets com-

puted is to tune the controller in order to make sure that there

are no safety violations. Since, the method of over-approximation

can lead to false alarms, we first confirm that the faulty behaviors

correspond to concrete trajectories. This is accomplished via the

use of gradient-descent like search techniques, and random restarts.

Once we have the system traces which violate the specifications, we

feed them back into the training samples, and retrain the controller,

thus completing the design-verify-design loop.

3 RESULTS
We implemented the prototype tool for our neural rule generation

inside Sherlock, and used it together with Flow* for computing the

reach sets of the system. We used a set of 11 benchmarks of non-

linear systems, with a neural network controller. The networks

were trained using standard MPC control schemes. Our largest

benchmark had upto 17 dimensions, which modelled a quadrotor.

One of the neural networks involved had around 500 neurons, and

some of the networks were up to 6 layers deep. We were able to

successfully compute the reach sets for the benchmarks, and verify

the behaviors for the corresponding initial states. Sherlock can be

downloaded from https://github.com/souradeep-111/sherlock

REFERENCES
[1] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2013. Flow*: An Analyzer for

Non-linear Hybrid Systems. In Proc. of CAV’13 (LNCS), Vol. 8044. Springer, 258–
263.

[2] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. [n.

d.]. Output Range Analysis for Deep Feedforward Neural Networks. NFM 2018

(to appear), Cf. https://arxiv.org/pdf/1709.09130.pdf.

[3] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.

Learning and Verification of Feedback Control Systems using Feedforward Neural

Networks. IFAC-PapersOnLine 51, 16 (2018), 151 – 156. https://doi.org/10.1016/j.

ifacol.2018.08.026 6th IFAC Conference on Analysis and Design of Hybrid Systems

ADHS 2018.

[4] Rüdiger Ehlers. 2017. Formal Verification of Piece-Wise Linear Feed-Forward

Neural Networks. InATVA (Lecture Notes in Computer Science), Vol. 10482. Springer,
269–286.

[5] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2017.

Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. Springer Inter-
national Publishing, Cham, 97–117. https://doi.org/10.1007/978-3-319-63387-9_5

https://arxiv.org/pdf/1709.09130.pdf
https://doi.org/10.1016/j.ifacol.2018.08.026
https://doi.org/10.1016/j.ifacol.2018.08.026
https://doi.org/10.1007/978-3-319-63387-9_5

	Abstract
	1 Introduction
	2 Problem Statement and Approach
	2.1 Problem Statement
	2.2 Approach
	2.3 Training the Neural Network

	3 Results
	References

