
Output Range Analysis for Deep Feedforward Neural
Networks

Souradeep Dutta1, Susmit Jha2, Sriram Sankaranarayanan1 and Ashish Tiwari 2.

1. University of Colorado, Boulder, USA.
2. SRI International, Menlo Park, USA.

{souradeep.dutta,sriram.sankaranarayanan}@colorado.edu,
{tiwari,susmit.jha}@csl.sri.com

Abstract. Given a neural network (NN) and a set of possible inputs to the net-
work described by polyhedral constraints, we aim to compute a safe over-approximation
of the set of possible output values. This operation is a fundamental primitive
enabling the formal analysis of neural networks that are extensively used in a
variety of machine learning tasks such as perception and control of autonomous
systems. Increasingly, they are deployed in high-assurance applications, leading
to a compelling use case for formal verification approaches. In this paper, we
present an efficient range estimation algorithm that iterates between an expensive
global combinatorial search using mixed-integer linear programming problems,
and a relatively inexpensive local optimization that repeatedly seeks a local op-
timum of the function represented by the NN. We implement our approach and
compare it with Reluplex, a recently proposed solver for deep neural networks.
We demonstrate applications of our approach to computing flowpipes for neural
network-based feedback controllers. We show that the use of local search in con-
junction with mixed-integer linear programming solvers effectively reduces the
combinatorial search over possible combinations of active neurons in the network
by pruning away suboptimal nodes.

1 Introduction

Deep neural networks have emerged as a versatile and popular representation for ma-
chine learning models. This is due to their ability to approximate complex functions, as
well as the availability of efficient methods for learning these from large data sets. The
black box nature of NN models and the absence of effective methods for their analy-
sis has confined their use in systems with low integrity requirements. However, more
recently, deep NNs are also being adopted in high-assurance systems, such as auto-
mated control and perception pipeline of autonomous vehicles [13] or aircraft collision
avoidance [12]. While traditional system design approaches include rigorous system
verification and analysis techniques to ensure the correctness of systems deployed in
safety-critical applications [1], the inclusion of complex machine learning models in
the form of deep NNs has created a new challenge to verify these models. In this pa-
per, we focus on the range estimation problem, wherein, given a neural network N and
a polyhedron φ(x) representing a set of inputs to the network, we wish to estimate
a range, denoted as range(li,φ), for each of the network’s output li that subsumes all

possible outputs and is tight within a given tolerance δ . We restrict our attention to feed-
forward deep NNs. While we focus on NNs that use rectified linear units (ReLUs) [17]
as activation functions, we also discuss extensions to other activation functions through
piecewise linear approximations.

Our approach is based on augmenting a mixed-integer linear programming (MILP)
solver. First of all, we use a sound piecewise linearization of the nonlinear activation
function to define an encoding of the neural network semantics into mixed-integer con-
straints involving real-valued variables and binary variables that arise from the (piece-
wise) linearized activation functions. The encoding into MILP is a standard approach to
handling piecewise linear functions [28]. As such, the input constraints φ(x) are added
to the MILP and next, the output variable is separately maximized and minimized to
infer a range. Our approach combines the MILP solver with a local search that exploits
the local continuity and differentiability properties of the function represented by the
network. These properties are not implicit in the MILP encoding that typically relies on
a branch-and-cut approach to solve the problem at hand. On the other hand, local search
alone may get “stuck” in local minima. Our approach handles local minima by using
the MILP solver to search for a solution that is “better” than the current local minimum
or conclude that no such solution exists. Thus, by alternating between inexpensive local
search iterations and relatively expensive MILP solver calls, we seek an approach that
can exploit local properties of the neural network function but at the same time avoid
the problem of local minima.

The range estimation problem has several applications. For instance, a safety fo-
cused application of the range estimation problem arises when we have deep neural
networks implementing a controller. In this case, the range estimation problem enables
us to prove bounds on the output of the NN controller. This is important because out-of-
bounds outputs can drive the physical system into undesirable configurations, such as
the locking of robotic arm, or command a car’s throttle beyond its rated limits. Finding
these errors through verification will enable design-time detection of potential failures
instead of relying on runtime monitoring which can have significant overhead and also
may not allow graceful recovery. Additionally, range analysis can be useful in proving
the safety of a closed loop system by integrating the action of a neural network con-
troller with that of a plant model. In this paper, we focus on the application of range
estimation problem to proving safety of several neural network plant models along with
neural network feedback controllers. Other applications include proving the robustness
of classifiers by showing that all possible input perturbations within some range do not
change the output classification of the network.

Related Work The importance of analytical certification methods for neural networks
has been well-recognized in literature. Neural networks have been observed to be very
sensitive to slight perturbations in their inputs producing incorrect outputs [26, 21]. This
creates a pressing need for techniques to provide formal guarantees on the neural net-
works. The verification of neural networks is a hard problem, and even proving simple
properties about them is known to be NP-complete [14]. The complexity of verifying
neural networks arises primarily from two sources: the nonlinear activation functions
used in the network as elementary neural units and the structural complexity that can

be measured using depth and size of the network. Kurd [16] presented one of the first
categorization of verification goals for NNs used in safety-critical applications. The
proposed approach here targets a subset of these goals, G4 and G5, which aim at ensur-
ing robustness of NNs to disturbances in inputs, and ensuring the output of NNs are not
hazardous.

Recently, there has been a surge of interest in formal verification tools for neural
networks [14, 10, 23, 22, 30, 31, 8, 25, 18]. A detailed discussion of these approaches to
neural networks with piecewise linear activation functions, and empirical evaluations
over benchmark networks has been carried out by Bunel et al [5]. Our approach relies
on a piecewise linearization of the nonlinear activation function. This idea has been
studied in the past, notably by Pulina et al [22, 23]. The key differences include: (a) our
approach do not perform a refinement operation. As such, no refinement is needed for
networks with piecewise linear activation functions, since the activation functions are
encoded precisely. For other kinds of functions such as sigmoid or tanh, a refinement
may be needed to improve the inferred ranges, but is not considered in our work. (b)
We do not rely on existing Satisfiability-Modulo Theory (SMT) solvers [2]. Instead, our
approach uses a mixed-integer linear programming (MILP) solver in combination with
a local search. Recently, Lomuscio and Maganti present an approach that encodes neu-
ral networks into MILP constraints [18]. A similar encoding is also presented by Tjeng
and Tedrake [27] for verifying robustness of neural network classifiers under a class
of perturbations. These encodings are similar to ours. The optimization problems are
solved directly using an off-the-shelf MILP solver [28, 4]. Additionally, our approach
augments the MILP solver with a local search scheme. We note that the use of local
search can potentially speed up our approach, since neural networks represent contin-
uous, piecewise-differentiable functions. On the flip side, these functions may have a
large number of local minima/maxima. Nevertheless, depending on the network, the
function it approximates and the input range, the local search used in conjunction with
a MILP solver can yield rapid improvements to the objective function.

Augmenting existing LP solvers has been at the center of two recent approaches
to the problem. The Reluplex approach by Katz et al focuses on ReLU feed-forward
networks [14]. Their work augments the Simplex algorithm with special functions and
rules that handle the constraints involving ReLU activation functions. The linear pro-
gramming used for comparison in Reluplex performs significantly less efficiently ac-
cording to the experiments reported in this paper [14]. Note, however, that the scenarios
used by Katz et al. are different from those studied here, and were not publicly available
for comparison at the time of writing. Ehlers augments a LP solver with a SAT solver
that maintains partial assignments to decide the linear region for each individual neuron.
The solver is instantiated using facts inferred from a convexification of the activation
function [8], much in the style of conflict clauses and lemmas used by SAT solvers. In
fact, many ideas used by Ehlers can be potentially used to complement our approach
in the form of cuts that are specific to neural networks. Such specialized cuts are very
commonly used in MILP solvers.

A related goal of finding adversarial inputs for deep NNs has received a lot of at-
tention, and can be viewed as a testing approach to NNs instead of verification method
discussed in this paper. A linear programming based approach for finding adversarial

inputs is presented in [3]. A related approach for finding adversarial inputs using SMT
solvers that relies on a layer-by-layer analysis is presented in [10]. Simulation-based
approaches [30] for neural network verification have also been proposed in literature.
This relies on turning the reachable set estimation problem into a neural network max-
imal sensitivity computation, and solving it using a sequence of convex optimization
problems. In contrast, our proposed approach combines numerical gradient-based opti-
mization with mixed-integer linear programming for more efficient verification.

Contributions We present a novel algorithm for propagating convex polyhedral in-
puts through a feedforward deep neural network with ReLU activation units to estab-
lish ranges for the outputs of the network. We have implemented our approach in a
tool called SHERLOCK [6]. We compare SHERLOCK with a recently proposed deep NN
verification engine - Reluplex [14]. We demonstrate the application of SHERLOCK to
establish output range of deep NN controllers. Our approach seems to scale consistently
to neural networks having 100 neurons to as many as over 6000 neurons.

2 Preliminaries

We present the preliminary notions including deep neural networks, polyhedra, and
mixed integer linear programs.

We will study feed forward neural networks (NN) throughout this paper with n > 0
inputs and m > 0 outputs. For simplicity, we will present our techniques primarily for
the single output case (m = 1), explaining how they can be extended to networks with
multiple outputs.

Let x ∈ Rn denote the inputs and y ∈ R be the output of the network. Structurally,
a NN N consists of k > 0 hidden layers, wherein we assume that each layer has the
same number of neurons N > 0. We use Ni j to denote the jth neuron of the ith layer for
j ∈ {1, . . . ,N} and i ∈ {1, . . . ,k}.

Definition 1 (Neural Network). A k layer neural network with N neurons per hidden
layer is described by matrices: (W0,b0), . . . ,(Wk−1,bk−1),(Wk,bk), wherein (a) W0,b0
are N× n and N× 1 matrices denoting the weights connecting the inputs to the first
hidden layer, (b) Wi,bi for i ∈ [1,k− 1] connect layer i to layer i+ 1 and (c) Wk,bk
connect the last layer k to the output.

Each neuron is defined using its activation function σ linking its input value to the
output value. Although this can be any function, there are a few common activation
functions:
1. ReLU: The ReLU unit is defined by the activation function σ(z) : max(z,0).
2. Sigmoid: The sigmoid unit is defined by the activation function σ(z) : 1

1+e−z .
3. Tanh: The activation function for this unit is σ(z) : tanh(z).

Figure 1 shows these functions graphically. We will assume that all the neurons of
the network N have the same activation function σ . Furthermore, we assume that σ is
a continuous function and differentiable almost everywhere.

Given a neural network N as described above, the function F : Rn→ R computed
by the neural network is given by the composition F := Fk ◦ · · · ◦F0 wherein Fi(z) :

x

σ(x)

-9 -6 -3 0 3 6 9
-1

1
tanh(z)

sigmoid(z)

ReLU(z)

Fig. 1: Activation functions commonly used in neural networks.

σ(Wiz+bi) is the function computed by the ith hidden layer, F0 the function linking the
inputs to the first layer, and Fk linking the last layer to the output.

For a fixed input x, it is easily seen that the function F computed by a NN N
is continuous and nonlinear, due to the activation function σ . For the case of neu-
ral networks with ReLU units, this function is piecewise affine, and differentiable al-
most everywhere in Rn. For smooth activation functions such as tanh and sigmoid, the
function is differentiable as well. If it exists, we denote the gradient of this function
∇F : (∂x1F, . . . , ∂xnF). Computing the gradient can be performed efficiently (as de-
scribed subsequently).

2.1 Mixed Integer Linear Programs

Throughout this paper, we will formulate linear optimization problems with integer
variables. We briefly recall these optimization problems, their computational complex-
ity and solution techniques used in practice.

Definition 2 (Mixed Integer Program). A mixed integer linear program (MILP) in-
volves a set of real-valued variables x and integer valued variables w of the following
form:

max aT x+bT w
s.t. Ax+Bw≤ c

x ∈ Rn, w ∈ Zm

The problem is called a linear program (LP) if there are no integer variables w. The
special case wherein w ∈ {0,1}m is called a binary MILP. Finally, the case without an
explicit objective function is called an MILP feasibility problem.

It is well known that MILPs are NP-hard problems: the best known algorithms,
thus far, have exponential time worst case complexity. We will later briefly review the
popular branch-and-cut class of algorithms for solving MILPs at a high level. These
algorithms along with the associated heuristics underlie highly successful, commercial
MILP solvers such as Gurobi [9] and CPLEX [11].

3 Problem Definition and MILP Encoding

Let N be a neural network with inputs x ∈ Rn, output y ∈ R and weights (W0,b0), . . .,
(Wk,bk), activation function σ for each neuron unit, defining the function FN : Rn→R.

Definition 3 (Range Estimation Problem). The problem is defined as follows:

– INPUTS: Neural network N , and input constraints P : Ax≤ b that is compact: i.e,
closed and bounded in Rn. A tolerance parameter is a real number δ > 0.

– OUTPUT: An interval [`,u] such that (∀ x∈ P) FN(x)∈ [`,u]. I.e., [`,u] contains the
range of FN over inputs x ∈ P. Furthermore, the interval is δ -tight:

u−δ ≤max
x∈P

FN(x) and `+δ ≥min
x∈P

FN(x) .

Without loss of generality, we will focus on estimating the upper bound u. The case
for the lower bound will be entirely analogous.

3.1 MILP Encoding

We will first describe the MILP encoding when σ is defined by a ReLU unit. The
treatment of more general activation functions will be described subsequently. The real-
valued variables of the MILP are as follows:
1. x ∈ Rn: the inputs to the network with n variables.
2. z1, . . . ,zk−1, the outputs of the hidden layer. Each zi ∈ RN .
3. y ∈ R: the overall output of the network.

Additionally, we introduce binary (0/1) variables t1, . . . , tk−1, wherein each vector
ti ∈ ZN (the same size as zi). These variables will be used to model the piecewise
behavior of the ReLU units.

Next, we encode the constraints. The first set of constraints ensure that x ∈ P. Sup-
pose P is defined as Ax≤ b then we simply add the constraints C0 : Ax≤ b.

For each hidden layer i, we require that zi+1 = σ(Wizi +bi). Since σ is not linear,
we use the binary variables ti+1 to encode the same behavior:

Ci+1 :

zi+1 ≥Wizi +bi,
zi+1 ≤Wizi +bi +Mti+1,
zi+1 ≥ 0,
zi+1 ≤M(1− ti+1)

Note that for the first hidden layer, we simply substitute x for z0. This trick of using
binary variables to encode piecewise linear function is standard in optimization [28,
Ch. 22.4] [29, Ch. 9]. Here M needs to be larger than the maximum possible output
at any node. We can derive fast estimates for M through interval analysis by using the
norms ||Wi||∞ and the bounding box of the input polyhedron.

The output y is constrained as: Ck+1 : y =Wkzk +bk.
The MILP, obtained by combining these constraints, is of the form:

max y s.t. constraints C0, . . . , Ck+1(see above)
x,z1, . . . ,zk,y ∈ RkN+n+1

t1, . . . , tk−1 ∈ Z(k−1)N
(3.1)

Theorem 1. The MILP encoding in (3.1) is always feasible and bounded. Its optimal
solution u∗ corresponds to an input to the network x∗ ∈ P such that y = FN(x) = u∗.
Furthermore, for all x ∈ P, FN(x)≤ u∗.

Encoding Other Activation Functions: We will now describe the encoding for more
general activation functions including tanh and sigmoid functions. Unlike a ReLU unit,
that is described by a two piecewise linear function, approximating these functions may
require three or more linear “pieces”. Furthermore, we would like our approximation to
include an error estimate that bounds away the differences between the original function
and its piecewise approximation.

We will encode the constraint y = σ(x) for a single neuron with x ∈ [−Mx,Mx]. The
activation function y : σ(x) is approximated by a piecewise linear function:

ŷ :

a0x+b0 +[−ε0,ε0] −Mx ≤ x≤ x1

· · · · · ·
aix+bi +[−εi,εi] xi ≤ x≤ xi+1

· · · · · ·
akx+bk +[−εk,εk] xk ≤ x≤Mx

x

σ(x)

-4 -2 0 2 4

Also, the output y is bounded inside the range [−My,My]. This bound is inferred by
bounding σ(x) over inputs [−Mx,Mx]. The bound Mx is estimated conservatively for a
given network through interval analysis.

To encode the constraint y = σ(x) as an MILP, we now introduce binary variables
t0, . . . , tk ∈ {0,1}k+1, wherein ti = 1 encodes the case when xi ≤ x ≤ xi+1. For conve-
nience, set x0 =−Mx and xk+1 = Mx.

We encode that at most one of the cases can apply for any given x.

t0 + · · ·+ tk = 1

Next, ti = 1 must imply xi ≤ x≤ xi+1:

xi−2(1− ti)Mx ≤ x≤ xi+1 +2(1− ti)Mx

Thus, if ti = 1 then the bounds are simply xi ≤ x ≤ xi+1. For ti = 0, we get xi−2Mx ≤
x≤ xi+1 +2Mx, which follows from −Mx ≤ x≤Mx.

The output y is related to the inputs as

aix+bi− εi−2(1− ti)My ≤ y≤ aix+bi + εi +2(1− ti)My .

Given the encoding for a single unit, we can now write down constraints for encod-
ing an entire neural network with these activation units as an MILP, as shown earlier for
ReLU units.

Solving Monolithic MILP (Branch-and-Cut Algorithm): Once the MILP is formulated,
the overall problem can be handed off to a generic MILP solver, which yields an optimal
solution. Most high performance MILP solvers are based on a branch-and-cut approach
that will be briefly described here [20].

100

80 98

77 68 87

75 75 85

70 73 65 80

branch

branch

cut

branch

cut

branch

cut branch

Fig. 2: A tree representation of a branch-
and-cut solver execution: each node shows
the optimal value of the LP relaxation, if
feasible. The leaves are color coded as yel-
low: infeasible, blue: feasible solution for
MILP found, red: suboptimal to already dis-
covered feasible solution.

First, the approach solves the LP
relaxation of the problem in (3.1) by
temporarily treating the binary variables
t1, . . . , tk as real-valued. The optimal so-
lution of the relaxation is an upper bound
to that of the original MILP. The two so-
lutions are equal if the LP solver yields
binary values for t1, . . . , tk. However, fail-
ing this, the algorithm has two choices to
eliminate the invalid fractional solution:
(a) Choose a fractional variable ti, j, and

branch into two subproblems by
adding the constraint ti, j = 0 to one
problem, and ti, j = 1 to the other.

(b) Add some valid inequalities (cutting
planes) that remove the current frac-
tional solutions but preserve all inte-
ger solutions to the problem.
In effect, the overall execution of a

branch-and-cut solver resembles a tree. Each node represents an MILP instance with
the root being the original instance. Figure 2 depicts such a tree visually providing some
representative values for the solution of the LP relaxation at each node. The leaves may
represent many possibilities:
1. The LP relaxation yields an integral solution. In this case, we use this solution to

potentially update the best solution encountered thus far, denoted zmax. The leaves
colored blue in Figure 2 depict such nodes.

2. The LP relaxation is infeasible, eg., the yellow leaf in Figure 2.
3. The LP relaxation’s objective is less than or equal to zmax, the best feasible solution

seen thus far. The leaves colored red in Figure 2 depict this possibility.
Therefore, the key to solving MILPs fast lies in discovering feasible MILP solutions,

early on, whose objective function values are as large as possible. In the subsequent
section, we will describe how a local search procedure can be used to improve feasible
solutions found by the solver (blue leaves in Fig. 2).

4 Combining MILP Solvers with Local Search

In this section, we will describe how local search can be used alongside an MILP solver
to yield a more efficient solver for the range estimation problem. The key idea is to use
local search on a connected subspace of the search space to improve any solution found
by the global non-convex optimizer (MILP in our case).

4.1 Overall Approach

The overall approach is shown in Algo 1. It consists of two major components: A local
search represented by the call to LocalSearch in line 7 and the call to SolveMILPUp-
toThreshold in line 9.

Algorithm 1 Maximum value u for a neural network N over x ∈ P with tolerance
δ > 0.
1: procedure FINDUPPERBOUND(N , P, δ)
2: x ← Sample(P) . Sample an input at random
3: u ← EvalNetwork(N ,x)
4: I ← FormulateMILPEncoding(N ,P) . See (3.1)
5: terminate← false
6: while not terminate do
7: (x̂, û) ← LocalSearch(N , x, P) . Note: û = FN(x̂)
8: u ← û+δ

9: (x′,u′, feas) ← SolveMILPUptoThreshold(I, u) . Note: If feas then u′ = FN(x′).
10: if feas then
11: (x,u) ← (x′,u′)
12: else
13: terminate← true
14: return u . return the upper bound u.

Local search uses gradient ascent over the neural network, starting from the current
input x ∈ P with u : FN(x) to yield a new input x̂ with û : FN(x̂), such that û≥ u.

The MILP solver works over the MILP encoding (3.1), formulated in line 4. How-
ever, instead of solving the entire problem in one shot, the solver is provided a target
threshold u as input. It searches for a feasible solution whose objective is at least u, and
stops as soon as it finds one. Otherwise, it declares that no such solution is possible.

Packages such as Gurobi support such a functionality using the branch-and-cut
solver by incrementally maintaining the current search tree. When called upon to find
a solution that exceeds a given threshold, the solver performs sufficiently many steps
of the branch-and-cut algorithm to either find a feasible solution that is above the re-
quested threshold, or solve the problem to completion without finding such a solution.
The approach shown in Algo 1 simply alternates between the local solver (line 7) and
the MILP solver (line 9), while incrementing the current threshold by δ , the tolerance
parameter (line 8). We assume that the procedures LocalSearch and SolveMILPUp-
toThreshold satisfy the following properties:

– (P1) Given x ∈ P, LocalSearch returns x̂ ∈ P such that FN(x̂)≥ FN(x).
– (P2) Given the encoding I and the threshold u, the SolveMILPUptoThreshold

procedure either declares feasible along with x′ ∈ P such that u′ = FN(x′) ≥ u,
or declares not feasible if no x′ ∈ P satisfies FN(x′)≥ u.

We recall the basic assumptions thus far: (a) P is compact, (b) δ > 0 and (c) proper-
ties P1, P2 apply to the LocalSearch and SolveMILPUptoThreshold procedures. Let
us denote the ideal upper bound by u∗ : maxx∈P FN(x).

Theorem 2. Algorithm 1 always terminates. Furthermore, the output u satisfies u ≥
u∗ and u≤ u∗+δ .

Proof. Since P is compact and FN is a continuous function. Therefore, the maximum
u∗ is always attained for some x∗ ∈ P.

The value of u increases by at least δ each time we execute the loop body of the
While loop in line 6. Furthermore, letting u0 be the value of u attained by the sample
obtained in line 2, we can upper bound the number of steps by

⌈
(u∗−u0)

δ

⌉
. This proves

termination.
We note that the procedure terminates only if SolveMILPUptoThreshold returns

infeasible. Therefore, appealing to property P2, we note that (∀ x ∈ P) FN(x) ≤ u. Or
in other words, u∗ ≤ u.

Let un denote the value û returned by LocalSearch in the final iteration of the loop
and let the corresponding input be xn, so that FN(xn) = un. We have un ≤ u∗ ≤ u. How-
ever, un = u−δ . Therefore, u≤ u∗+δ .

4.2 Local Search Improvement

The local search uses a gradient ascent algorithm, starting from an input point x0 ∈ P
and u = FN(x0), iterating through a sequence of points (x0,u0), . . ., (xn,un), such that
xi ∈P and u0 < · · ·< un. The new iterate xi+1 is obtained from xi, in general, as follows:
1. Compute the gradient pi : ∇FN(xi).
2. Find a new point xi+1 := xi + sipi for a step size si > 0.

Gradient Calculation: Technically, the gradient of FN(x) need not exist for each input
x if σ is a ReLU function. However, this happens for a set of points of measure 0, and
is dealt with by using a smoothed version of the function σ defining the ReLU units.

The computation of the gradient uses the chain rule to obtain the gradient as a
product of matrices: p : J0× J1× ·· · × Jk, wherein Ji represents the Jacobian matrix
of partial derivatives of the output of the (i+1)th layer zi+1 with respect to those of the
ith layer zi. Since zi+1 = σ(Wizi +bi) we can compute the gradient Ji using the chain
rule. In practice, the gradient calculation can be piggybacked with function evaluation
FN(x) so that function evaluation returns both the output u and the gradient ∇FN(x).

Step Size Calculation: First order optimization approaches present numerous rules such
as the Armijo step sizing rules for calculating the step size [19]. Using these rules, we
can use an off-the-shelf solver to compute a local maximum of FN .

Locally Active Regions: Rather than perform steps using a step-sizing rule, we can
perform longer steps for the special case of piecewise linear activation functions by
defining a locally active region for the input x. For the remainder of the discussion, we
assume that σ is a piecewise linear function.

We first describe the concept for a ReLU unit A ReLU unit is active if its input
x≥ 0, and inactive otherwise.

Definition 4 (Locally Active Region (ReLU)). For an input x to the neural network
N , the locally active region L (x) describes the set of all inputs x′ such that x′ activates
exactly the same ReLU units as x.

The concept of locally active region can be generalized to any piecewise linear
function σ that has J > 0 pieces, say X1, . . . ,XJ , where

⋃
i Xi is the input space and σ

is linear on the input subspace Xi. For such a piecewise linear function σ , the locally
active region corresponding to an input x, L (x), is the set Xi such that x ∈ Xi.

Given the definition of a locally active region, we obtain the following property for
piecewise linear activation functions.

Lemma 1. For all x′ ∈L (x), we have ∇FN(x) = ∇FN(x′). Furthermore, for a ReLU
neural net, the region L (x) is described by a polyhedron with possibly strict inequality
constraints.

Let L (xi) denote the closure of the local active set obtained by converting the strict
constraints (with >) to their non-strict versions (with≥). Therefore, the local maximum
is simply obtained by solving the following LP.

max pT
i x s.t. x ∈L (xi)∩P ,where pi : ∇FN(xi) .

The solution of the LP above (xi+1) yields the next iterate for local search. Note that
this solution xi+1 will typically be at the boundary of L (xi). We randomly perturb
this solution (or small numerical errors in the solver achieve the same effect) so that
∇FN(xi+1) 6= ∇FN(xi).

Termination: The local search is terminated when each step no longer provides a suf-
ficient increase, or alternatively the length of each step is deemed too small. These are
controlled by user specified thresholds in practice. Another termination criterion simply
stops the local search when a preset maximum number of iterations is exceeded. In our
implementation, all three criteria are used.

Lemma 2. Given a starting input x0 ∈ P, the LocalSearch procedure returns a new
x′ ∈ P, such that FN(x′)≥ FN(x).

Analysis: For a given neural network N and its corresponding MILP instance I, let
us compare the number of nodes N1 explored by a monolithic solution to the MILP
instance with the total number of nodes N2 explored collectively by the calls to the
SolveMILPUptoThreshold routine in Algorithm 1. Additionally, let Kl denote the
number of LocalSearch calls made by this algorithm. We expect each call to the lo-
cal search to provide an improved feasible solution to the MILP solver, enabling it to
potentially prune more nodes during its search. Therefore, the addition of local search
is advantageous whenever

N1Tl p > N2Tl p +KlTloc ,

wherein Tl p is the average time taken to solve an LP relaxation (assumed to be the same)
and Tloc is the average time for a local search.

A precise analysis is complicated since the future heuristic choices made by the
solver can be different, due to the newly added local search iteration. Thus, we resort to
an empirical comparison of the original monolithic MILP versus the solution procedure
that uses the local search iterations.

x(j)
0

N f x1 N f xk−1 N f xk

Nh Nh Nh
u0 u1 uk−1

Fig. 3: Unwinding of the closed loop model with plant N f and controller Nh, used to
estimate reachable sets.

5 Application: Reachability Analysis

Neural networks are increasingly used as models of physical dynamics and feedback
control laws to achieve objectives such as safety, reachability and stability [13]. How-
ever, doing so in a verified manner is a challenging problem. We illustrate the compu-
tation reachable set over-approximations for such systems over a finite time horizon in
order to prove bounded time temporal properties.

Figure 3 shows the unwinding of the plant network N f and the controller Nh, for
N > 0 steps. Estimating an over-approximation of the reachable state xN at time N
reduces to solving an output range analysis problem over the unwound network.

We trained a NN to control a nonlinear plant model (Example 17 from [24]) whose
dynamics are describe by the ODE: ẋ=−x3+y, ẏ= y3+z, ż= u. We approximated the
discrete time dynamics of the non linear system using a 4 input, 3 output neural network
with 1 hidden layers having 300 neurons. This approximation ensures that unwinding,
as shown in Figure 3, results in a neural network.

Next, we devise a model predictive control (MPC) scheme to stabilize this system
to the origin, and train the NN by sampling inputs from the state space X : [−0.5,0.5]3

and using the MPC to provide the corresponding control. We trained a 3 input, 1 output
network, with 5 hidden layers, with the first layer having 100 neurons and the remaining
4 layers to saturate out the control output range.

For illustrative purpose, we compute the reach sets starting from the initial set,
[0.3,0.35]× [−0.35,−0.3]× [0.35,0.4], and compute the evolution as shown in Figure
4. Note that, we stop the computation of reach sets once the sets are contained within
the target box given by : [−0.05,0.05]× [−0.05,0.05]× [−0.05,0.05]. The reach sets
have been superimposed on numerous concrete system trajectories.

6 Experimental Evaluation

We have implemented the ideas described thus far in a C++-based tool called SHER-
LOCK. SHERLOCK combines local search with the commercial parallel MILP solver
Gurobi, freely available for academic use [9]. Currently, our implementation supports
neural networks with ReLU units. We hope to extend this to other activation functions,
as described in the paper.

Fig. 4: Evolution of reach sets for the neural network feedback system.

An interval analysis was used to set the M parameter in the MILP encoding. The
tolerance parameter δ in Algorithm 1, was set to 5×10−2 for all the test cases.

For comparison with Reluplex, we used the implementation available online [15].
However, at its core, Reluplex solves a satisfiability problem that checks if the output y
lies inside a given range for constraints P over the inputs to the network. To facilitate
comparisons, we simply use Reluplex to check if the output range computed by our
approach is a valid over-approximation.

We consider a set of 16 microbenchmarks that consist of neural networks obtained
from two different sources discussed below.
1. Known Analytical Functions: We formulated four simple analytical functions y =

f (x) as shown in Figure 5 controlling for the number of local minima seen over
the chosen input range for each function. We then trained a neural network model
based on input output samples (xi, f (xi))

N
i=1 for each function. The result yielded

networks N0−N4 along with the input constraints.
2. Unwindings of closed loop systems: We formulated 12 examples that come from

the “unwinding” of a closed loop controller and plant models. The plant models
are obtained from our previous work on controller synthesis [24]. The process of
training the controller network is discussed elsewhere [7].
Table 1 summarizes the comparison of SHERLOCK against a “monolithic” MILP

approach and the Reluplex solver. Since gurobi supports parallel branch-and-bound as
a default, we report on the comparison over multicore (23 parallel cores) as well as

Fig. 5: Plots of the first 4 benchmark functions used to train the neural networks shown
in Table 1.

single core deployments. Note that the comparison uses the total CPU time rather than
wall clock time.

SHERLOCK on the multicore deployment is faster on all save one of the benchmarks
in terms of CPU time. However, comparing the number of nodes explored, we observe
that SHERLOCK explores fewer nodes in just 7 out of the 16 cases. We attribute this to
the more complex nature of parallel branch-and-cut heuristics, wherein parallel threads
may explore more nodes than strictly necessary. For the single core deployment, we
note that the total CPU time is strongly correlated with the number of nodes explored.
Here, SHERLOCK outperforms the monolithic MILP on the six largest examples with
over 1000 neurons (N10−N15) in terms of time and number of nodes explored. For
the smaller examples, the monolithic solver outperforms our approach, but the running
times remain small for both approaches. For two of the networks, (N7 and N15), our
starting sample followed by a local search resulted in the global maximum, which was
certified by the LP relaxation. This leads to a node count of 1.

Comparing with Reluplex, we note that Reluplex was able to verify the bound in 6
instances but at a larger time cost than SHERLOCK or the monolithic MILP approach.
For 10 out of 16 instances, the solver terminates due to an internal error.

23 cores single core
SHERLOCK Monolithic SHERLOCK Monolithic Reluplex

ID x k N T Nc T Nc T Nc T Nc T
N0 2 1 100 1s 94 2.3s 24 0.4s 44 0.3s 25 9.0

N1 2 1 200 2.2s 166 3.6s 29 0.9s 71 0.8s 38 1m50s
N2 2 1 500 7.8s 961 12.6s 236 2s 138 2.9s 257 15m59s
N3 2 1 500 1.5s 189 0.5s 43 0.6s 95 0.2s 53 12m25s
N4 2 1 1000 3m52s 32E3 3m52s 3E3 1m20s 4.8E3 35.6s 5.3E3 1h06m
N5 3 7 425 4s 6 6.1s 2 1.7s 2 0.9s 2 DNC

N6 3 4 762 3m47s 3.3E3 4m41s 3.6E3 37.8s 685 56.4s 2.2E3 DNC

N7 4 7 731 3.7s 1 7.7s 2 3.9s 1 3.1s 2 1h35m
N8 3 8 478 6.5s 3 40.8s 2 3.6s 3 3.3s 2 DNC

N9 3 8 778 18.3s 114 1m11s 2 12.5s 12 4.3s 73 DNC

N10 3 26 2340 50m18s 4.6E4 1h26m 6E4 17m12s 2.4E4 18m58s 1.9E4 DNC

N11 3 9 1527 5m44s 450 55m12s 6.4E3 56.4s 483 130.7s 560 DNC

N12 3 14 2292 24m17s 1.8E3 3h46m 2.4E4 8m11s 2.3E3 1h01m 1.6E4 DNC

N13 3 19 3057 4h10m 2.2E4 61h08m 6.6E4 1h7m 1.5E4 15h1m 1.5E5 DNC

N14 3 24 3822 72h39m 8.4E4 111h35m 1.1E5 5h57m 3E4 timeout - DNC

N15 3 127 6845 2m51s 1 timeout - 3m27s 1 timeout - DNC

Table 1: Performance results on networks trained on functions with known maxima and
minima . Legend: x number of inputs, k number of layers, N: total number of neurons,
T : CPU time taken, Nc: number of nodes explored. All the tests were run on a Linux
server running Ubuntu 17.04 with 24 cores, and 64GB RAM (DNC : Did Not Complete)

7 Conclusion

We presented a combination of local and global search for estimating the output ranges
of neural networks given constraints on the input. Our approach has been implemented
inside the tool SHERLOCK and we compared our results with those obtained using the
solver Reluplex. We also demonstrated the application of our approach to verification of
NN-based control systems. Our approach can potentially be applied to verify controllers
learned by reinforcement learning techniques.

Our main insight here is to supplement search over a nonconvex space by using
local search over known convex subspaces. This idea is generally applicable. In this
paper, we showed how this idea can be applied to range estimation of neural networks.
The convex subspaces are obtained by fixing the subset of active neurons.

In the future, we wish to improve SHERLOCK in many directions, including the
treatment of recurrent neural networks, handling activation functions beyond ReLU
units and providing faster alternatives to MILP for global search.
Acknowledgments: We gratefully acknowledge inputs from Sergio Mover and Marco
Gario for their helpful comments on an earlier version of this paper. This work was
funded in part by the US National Science Foundation (NSF) under award numbers

CNS-1646556, CNS-1750009, CNS-1740079 and US ARL Cooperative Agreement
W911NF-17-2-0196. All opinions expressed are those of the authors and not neces-
sarily of the US NSF or ARL.

References

1. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
2. Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiability mod-

ulo theories. Handbook of satisfiability, 185:825–885, 2009.
3. Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori,

and Antonio Criminisi. Measuring neural net robustness with constraints. In Advances in
Neural Information Processing Systems, pages 2613–2621, 2016.

4. Robert E Bixby. A brief history of linear and mixed-integer programming computation.
Documenta Mathematica, pages 107–121, 2012.

5. Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar. Piece-
wise linear neural network verification: A comparative study. CoRR, abs/1711.00455, 2017.

6. Souradeep Dutta. SHERLOCK: An output range analysis tool for neural networks. Available
from https://github.com/souradeep-111/sherlock.

7. Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Verified infer-
ence of feedback control systems using feedforward neural networks. Draft (2017), Available
upon request.

8. Rüdiger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In
ATVA, volume 10482 of Lecture Notes in Computer Science, pages 269–286. Springer, 2017.

9. Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2016.
10. Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep

neural networks. CoRR, abs/1610.06940, 2016.
11. IBM ILOG Inc. CPLEX MILP Solver, 1992.
12. Kyle Julian and Mykel J. Kochenderfer. Neural network guidance for UAVs. In AIAA Guid-

ance Navigation and Control Conference (GNC), 2017.
13. Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. Plato: Policy learning

using adaptive trajectory optimization. arXiv preprint arXiv:1603.00622, 2016.
14. Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex:

An Efficient SMT Solver for Verifying Deep Neural Networks, pages 97–117. Springer Inter-
national Publishing, Cham, 2017.

15. Katz et al. Reluplex: CAV 2017 prototype. https://github.com/guykatzz/

ReluplexCav2017, 2017.
16. Zeshan Kurd and Tim Kelly. Establishing safety criteria for artificial neural networks. In

International Conference on Knowledge-Based and Intelligent Information and Engineering
Systems, pages 163–169. Springer, 2003.

17. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, 2015.

18. Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward
relu neural networks. CoRR, abs/1706.07351, 2017.

19. David G. Luenberger. Optimization By Vector Space Methods. Wiley, 1969.
20. John E. Mitchell. Branch-and-cut algorithms for combinatorial optimization problems.

Handbook of Applied Optimization, page 6577, 2002.
21. Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay Celik,

and Ananthram Swami. Practical black-box attacks against deep learning systems using
adversarial examples. CoRR, abs/1602.02697, 2016.

22. Luca Pulina and Armando Tacchella. An abstraction-refinement approach to verification of
artificial neural networks. In Computer Aided Verification, pages 243–257. Springer, 2010.

23. Luca Pulina and Armando Tacchella. Challenging smt solvers to verify neural networks. AI
Commun., 25(2):117–135, 2012.

24. Mohamed Amin Ben Sassi, Ezio Bartocci, and Sriram Sankaranarayanan. A linear
programming-based iterative approach to stabilizing polynomial dynamics. In Proc.
IFAC’17. Elsevier, 2017.

25. Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker. Towards verification
of artificial neural networks. In MBMV Workshop, page 3040, 2015.

26. Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. CoRR,
abs/1312.6199, 2013.

27. Vincent Tjeng and Russ Tedrake. Verifying neural networks with mixed integer program-
ming. CoRR, abs/1711.07356, 2017.

28. Robert J. Vanderbei. Linear Programming: Foundations & Extensions (Second Edition).
Springer, 2001. Cf. http://www.princeton.edu/~rvdb/LPbook/.

29. H. Paul Williams. Model Building in Mathematical Programming (Fifth Edition). Wiley,
2013.

30. Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Output reachable set estimation
and verification for multi-layer neural networks. CoRR, abs/1708.03322, 2017.

31. Weiming Xiang, Hoang-Dung Tran, Joel A. Rosenfeld, and Taylor T. Johnson. Reachable
set estimation and verification for a class of piecewise linear systems with neural network
controllers, 2018. To Appear in the American Control Conference (ACC), invited session on
Formal Methods in Controller Synthesis.

