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Abstract. In this paper, we use some observations on the nature of biochemical
reactions to derive interesting properties of qualitative biochemical Kripke struc-
tures. We show that these characteristics make Kripke structures of biochemical
pathways suitable for assumption based distributed model checking. The number
of chemical species participating in a biochemical reaction is usually bounded
by a small constant. This observation is used to show that the Hamming dis-
tance between adjacent states of a qualitative biochemical Kripke structures is
bounded. We call such structures as Bounded Hamming Distance Kripke struc-
tures (BHDKS). We, then, argue the suitability of assumption based distributed
model checking for BHDKS by constructively deriving worst case upper bounds
on the size of the fragments of the state space that need to be stored at each
distributed node. We also show that the distributed state space can be mapped
naturally to a hypercube based distributed architecture. We support our results by
experimental evaluation over benchmarks and biochemical pathways from public
databases.

1 Introduction

Recently, there has been a lot of work in the application of formal methods for the
modeling and reasoning of biochemical pathways. A popular approach uses the formal
model of Kripke structure derived from boolean abstractions of biochemical reactions
[6,4]. Model checking of these Kripke structures is capable of deriving valuable in-
formation about the underlying biochemical pathways that cannot be understood from
classical simulation techniques. However, model checking techniques suffer from state
space explosion and there have been several investigations into the scalability of model
checking techniques [1,3,7].One such method is the technique of assumption based dis-
tributed model checking as envisaged in [2].

However, little effort has been made in the direction of exploiting properties specific
to biochemical Kripke structures for the design of scalable model checking approaches.
We take the assumption based distributed model checking paradigm [2], where the state
space of a system is partitioned into several distributed nodes, as the basis of our work.
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Biochemical Kripke structures have been well studied in BIOCHAM [6,4]. We develop
a framework for distributing the state space of a biochemical Kripke structure among
several distributed nodes for model checking, by using structural properties of Kripke
structures derived from biochemical systems. In this paper, we present the following
results:

– Two states in a Kripke structure derived from biochemical pathways are connected
by a transition only if the Hamming distance between their propositional labels
is bounded by a small constant derived from the stoichiometry of the underlying
biochemical reactions. We call such structures as k - Bounded Hamming Distance
Kripke structures (BHDKS) where k is a small constant obtained from the stoi-
chiometry of the reactions .

– Bounded Hamming Distance Kripke structures can be well partitioned into frag-
ments each having a size that can be made small enough to be only polynomial
in the number of propositions of the Kripke structure (N), and hence amenable to
extensive fragmentation 1 for assumption based distributed model checking. The
result shows that it is possible to split the exponential state space of the BHDKS
(O(2N )) into fragments each of which is only polynomial in the number of the
propositions involved (O(Np), where p is a small constant).

– When the number of distributed nodes across which the state space is to be dis-
tributed is not too large (smaller than 2N/k for a k - Bounded Hamming Distance
Kripke structure with N atomic propositions), we present a hypercube based frag-
mentation approach which forms smaller fragments and ensures that the neighbours
of all the states on a distributed node lie only on the adjacent distributed nodes in
the hypercube.

We also note that a k - BHDKS with n states can be partitioned into n1−1/k size
fragments along the nodes of a hypercube despite the fact that, in general, the corre-
sponding class of graphs do not have “good” vertex separators i.e., n1−ϵ separators for
any ϵ > 0.

We organize the rest of the paper as follows: Section 2 presents new insights into
Kripke structures formed from biological systems by showing that the Hamming dis-
tance between any two successive states in the Kripke structure is bounded by a small
constant. Such Kripke structure are referred to as bounded Hamming distance Kripke
structures (BHDKS). We use these structures to derive a bound on the edge density in
Section 3. Section 4 presents relevant background results and definitions related to
distributed model checking. In section 5, we use the existence of a small bound on
the Hamming distance between successive states in BHDKS to argue that biochemical
pathways are more amenable to distributed model checking techniques by presenting
the worst case bounds on the size of the fragments of the distributed Kripke structure.
The proof presented is constructive and suggests methods of partitioning BHDKS. We
discuss the results of our experimental evaluation on benchmarks and public databases
in Section 6. The paper concludes with section 7 identifying scopes for further work.

1 We will also illustrate that general Kripke structures need not have any reduction in size during
fragmentation.
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2 Bounded Hamming Distance of Biochemical Kripke Structures

In this section, we shall describe the modeling of biochemical pathways and demon-
strate as to how the characteristics of biochemical pathways lead to their representation
as BHDKS.

2.1 Background

In the abstract boolean Kripke structure model [4,5,6], a biochemical reaction takes the
system from a state with biochemical entities matching the lefthand side of the reaction
rule, into one of the other states in which the biochemical entities of the righthand side
have been added. The biochemical entities which appear only in the lefthand side of the
rule and not in the righthand side may be nondeterministically present or absent in the
target state. By using this boolean abstraction, such models are capable of reasoning
about all possible behaviors of the system with unknown concentration values and un-
known kinetic parameters[4]. This modeling is particularly useful for complex chemical
systems like biochemical pathways where even a boolean abstraction can generate valu-
able results. It is also now well appreciated that biological models, despite their hybrid
nature, indeed have many digital (boolean) controls. In the model checking algorithm,
each biochemical entity is associated with a proposition. If the biochemical entity is
present in a state, the associated boolean proposition is true; other wise, it is false.
Thus, the biochemical Kripke structure makes a transition from one state to another
by “executing” a biochemical reaction and the truth values of the boolean propositions
change to reflect the biochemical entities added or removed from the system.

The detailed methodology which takes a biochemical pathway as input and forms a
Kripke structure is presented in [5]. In the following, we shall illustrate the derivation
of Kripke structures for biochemical pathways through some examples.

Example 1. Simple modeling of a chemical reaction.
Here, the presence and absence of reactants is encoded in the state tuple of the Kripke
structure. This is an implicitly assumed reasonable assumption in biochemical pathway
representations. Let us try to capture a transition wherein A and B react to form C and
D. A typical one is denoted:

A + B + ¬C + ¬D → A + B + C + D

which is interpreted as follows: The transition is defined from all states where the propo-
sitions associated with A and B are true, and C and D are false to those states where
propositions associated with C and D are true as well as A and B are true. The reason-
able assumption is that the reaction does not consume all its reactants and hence, some
quantity of reactants A and B are still present after the reaction.

Example 2. Abstract Modeling.
Consider the scenario of A and B reacting to form C and D,

A + B → C + D
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and we want to nondeterministically capture all possible scenarios. This is captured by

A + B + ¬C + ¬D → ¬A + B + C + D
A + B + ¬C + ¬D → A + ¬B + C + D
A + B + ¬C + ¬D → ¬A + ¬B + C + D
A + B + ¬C + ¬D → A + B + C + D
A + B + C + ¬D → ¬A + B + C + D
A + B + C + ¬D → A + ¬B + C + D
A + B + C + ¬D → ¬A + ¬B + C + D
A + B + C + ¬D → A + B + C + D
A + B + ¬C + D → ¬A + B + C + D
A + B + ¬C + D → A + ¬B + C + D
A + B + ¬C + D → ¬A + ¬B + C + D
A + B + ¬C + D → A + B + C + D
A + B + C + D → ¬A + B + C + D
A + B + C + D → A + ¬B + C + D
A + B + C + D → ¬A + ¬B + C + D
A + B + C + D → A + B + C + D

In an abstract model, each chemical reaction is interpreted as a set of chemical reac-
tions where some of the reactants may be present even after the execution of the reaction
and the products may be present even before the execution.

Example 3. The E. Coli K-12 Pathway: leucine biosynthesis [9].
Using the following abbreviations: K — 2-keto-isovalerate, AC — Acetyl-CoA,
C— Coenzyme A, H— 3-carboxy-3-hydroxy-isocaproate, T — 2-D-threo-hydroxy-
3-carboxy-isocaproate, CN — CO2 NADH, N — NADH, M — 2-keto-4-methyl-
pentanoate, L — L-leucine, AG — α-ketoglutarate, G — L-glutamate, the biochemical
pathway is given by the following reactions:

K + AC → C + H
H → T
T + N → M + CN
M + G → L + AG
AG → K
The reactions can be easily extrapolated to their abstract interpretation.

It may be noted that a Kripke structure is an asynchronous formalism. In particular,
two reactions occurring “simultaneously” can be modeled as one occurring after an-
other because of the nondeterministic modeling with respect to the reactants and the
asynchronous interleaving semantics of Kripke structures.

2.2 Bound on the Number of Chemical Entities Involved in a Reaction

A study of pathways [9,11] shows that for biochemical pathways, the number of bio-
chemical entities reacting in a chemical reaction is fairly small. As illustrated in Fig. 1,
almost 60% of the reactions in each of these databases have no more than two reactants
or two products. Also, no reaction was found with more than six reactants or products
in these databases. The statistics gathered from the databases of these widely differing
organisms shows that there is a very low probability of the interaction of more than a
few entities at the atomic level. Hence, all biochemical reactions indeed involve interac-
tion of a fairly small number of chemical entities, and the number of chemical entities
produced as a result of biochemical reactions are also small. We may contrast this with
an arithmetic operation a := a× b, a system wide reset in a VLSI chip or the setting of
bits in a long flag register. Each of these can take the Kripke structure of these hardware
or software systems from one state to another such that the Hamming distance between
them is arbitrarily large.
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(a) HumanCyc (b) EcoCyc

(c) AnthraCyc (d) YeastCyc

Fig. 1. The HumanCyc, EcoCyc, AnthraCyc and YeastCyc Databases Reactions Summary: The
bar charts clearly show that most reactions have small number of reactants and products. There
is no reaction having more than 6 reactants or products among some 3000 biochemical reactions
in these databases.

2.3 Bounded Hamming Distance Kripke Structures

In order to separate the development of the partitioning algorithm from the details of
the biochemical Kripke structure [6], we consider the earlier introduced BHDKS model.
This abstract model is sufficient for the construction of our partitioning algorithm.

Definition 1. Let K = (S,R,AP,L,F) be a Kripke structure, where S is the set of states, R
is the transition relation, AP is the set of atomic propositions,L is the labeling of states
with atomic propositions, F is the set of final states, and H(x,y) denotes the Hamming
distance between x and y. Then, K is called a k - Bounded Hamming Distance Kripke
structure iff

∀s, s′ ∈ S, R(s, s′) =⇒ (H(L(s),L(s′)) ≤ k)

Intuitively, a k-BHDKS has a transition between two states in the Kripke structure only
if the Hamming distance between the propositional labels of these states is at most k.
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Theorem 1. A biochemical Kripke structure is a k-BHDKS for some small k.

Proof. Let K be a biochemical Kripke structure[6]. Consider two states s and s’ in K.
If there is no transition from s to s′, we are done.

If there is a transition from s to s′, then the system executes some reaction at state s.
From our earlier observation, the reaction has at most r reactants and at most p products,
where r and p are small. When the reaction is executed, the reactants can nondetermin-
istically be removed from the system, while the products are added to the system. Thus,
s′ can differ from s in at most k = r + p chemical entities, that is H(s, s′)2≤ k. Hence,
the biochemical Kripke structure is a k-BHDKS for some small k.

3 Density of Bounded Hamming Distance Kripke Structures

In this section, we shall establish certain properties of BHDKS and show that they are
“reasonably sparse” in nature. We use the bound on the Hamming distance of neigh-
bouring states in a BHDKS to derive a bound on the edge density of these Kripke struc-
tures. We show that the edge density is only polynomial in the number of propositions
of the state space.

Theorem 2. A state in the k - Bounded Hamming Distance Kripke structure with log n
number of propositions (where n > 1) has a degree of at most (log n)k.

Proof. Let s be any state such that s ∈ S, where S is the state space of the k - Bounded
Hamming Distance Kripke structure. Now, consider all possible neighbours N(s) of s.
From the definition of BHDKS, we know that s′ ∈ N(s) only if H(s, s′) ≤ k. Now,
we define a set of states Pi such that p ∈ Pi if and only if H(s, p) = i. Further, let us
define P =

⋃
i=0...k Pi. Clearly,

– |Pi| =
(
log(n)

i

)

– Pi ∩ Pj = φ

So, |P | = |
⋃

i=0...k Pi|
=

∑
|Pi| (∵ Pi ∩ Pj = φ)

=
∑k

i=0

(
log(n)

i

)

≤ (log(n))k

Also, N(s) ⊂ P . Hence, |N(s)| ≤ |P | ≤ (log(n))k

Thus, each state has no more than (log(n))k neighbours.

Thus, the number of transitions in a Bounded Hamming Distance Kripke structure are
no more than polynomially (in the number of propositions in the Kripke structure) larger
than the number of states.

4 Background on Assumption Based Distributed Model Checking

Distributed model checking as presented in [1,2] decomposes the Kripke structure into
fragments. Each distributed node in the distributed computing cluster stores only one of

2 Eventually, we will use the notation H(s,s’) to mean H(L(s),L(s′)) .
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Fig. 2. An example of a Kripke structure and the fragments formed by dividing into two parts. The
dotted boxes surround the subsets used for constructing the partition. The dashed lines show the
actual partitions themselves. Observe that the partition was able to reduce the size of the Kripke
structure rather well. Also, the undirected edges indicate transitions possible in both directions.

these fragments; hence, the size of the model checking problem which can be processed
by the distributed model checking algorithm is bounded by the size of the smallest
fragments we can construct.

Definition 2. A Kripke structure M ′ = (S′, R′) is a fragment of a Kripke structure
M = (S, R) iff

– S′ ⊆ S,
– R′ ⊆ R and
– ∀(s, s′) ∈ R if s ∈ S′, then either (s, s′) ∈ R′ or ̸ ∃t ∈ S′ such that (s, t) ∈ R′.

Given a Kripke structure M , it is now pertinent to generate these fragments. Any subset
of the state space can be naturally extended to form a fragment by including those states
which are immediate neighbours of the states in this subset and the rest of the Kripke
structure, as shown in Fig 2. Formally,

(A bad instance) (A 5-clique)

Fig. 3. Bad instances for distributed model checking:In the left figure, the subsets are shown by
dotted boxes. For these subsets, each of the fragment will be as large as the original Kripke
structure and the purpose of the distributed algorithm will fail. In the right figure, a 5-clique is
shown. Irrespective of the choice of our subsets, each fragment will be as large as the whole
Kripke structure once again.
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Definition 3. Let M = (S, R) be a Kripke structure and T ⊆ S. The distributed
fragment of the Kripke structure FragmentM (T ) = (ST , RT ) is defined as

– ST = {s ∈ S|s ∈ T ∨ ∃s′ ∈ T such that (s′, s) ∈ R}
– RT = {(s1, s2) ∈ R|s1 ∈ T, s2 ∈ ST }

Thus, a distributed computation node i in the distributed model checking paradigm
contains all states from T (called core states) and their immediate predecessors
ST \ T (called border states).

The central idea of the distributed algorithm in [2] is presented in the following
algorithm:

proc Distributed Algorithm( input: total Kripke Structure M , ψ, f ;
output:Af(s0)(s0, ψ))

Split M into Ki;
for all i ∈ {1, . . . , n} do in parallel { for all Ki }
Take the initial assumption function;

repeat

repeat
Compute all you can;
Send relevant information to other nodes;
Receive relevant information from other nodes;

until all processes reach fixpoint;
Extrapolate additional information;

until all is computed;

Return result for the initial state s0;
od

end

In order to abstract the concerns of the assumption based distributed model checking
problem and allow a mathematical formulation of the fragmentation problem, we define
the notion of a separator of a set of states in a Kripke structure.

Definition 4. Given a set of states T ⊂ S of the Kripke structure K, the set V is said to
be a separator of T w.r.t S iff

– V ⊂ S
– There is no path from a state in S \ (T ∪ V ) to a state in T which does not pass

through some state in V .
That is, in the graph formed by removing V from S, KV = (S \ V, R \ RV ),
∀t ∈ T, ∀s ∈ S \ (V ∪ T ), there is no path from s to t in KV .
Clearly, RV = {(x, y) ∈ R|x ∈ V or y ∈ V }.

Intuitively, T is the core of the fragment and V is the set of border states. Thus, any set
of states along with its separator with respect to the rest of the Kripke structure contains
a fragment for assumption based distributed model checking.
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5 Fragmentation of BHDKS

Several efforts have been made to solve the problem of state space explosion in model
checking. The art and science of symbolic model checking [3] has made considerable
progress in increasing the size of the state space that can be model checked. Distributed
Model Checking is a technique which aims at exploiting the memory of a large number
of systems in a distributed environment. In the past, there has been work on developing
good distributed model checking algorithms for software by making use of the informa-
tion in control flow graphs [8]. However, to the best of our knowledge, there has been
no work on developing distributed algorithms for biochemical systems that establishes
worst case bounds on the size of each fragment by the use of structural properties of
biochemical Kripke structures. The background definitions related to assumption based
distributed model checking are presented in Sec. 4. We just recall the definition of a
fragment here.

Definition 5. Let M = (S, R) be a Kripke structure and T ⊆ S. The distributed
fragment of the Kripke structure FragmentM (T ) = (ST , RT ) is defined as

– ST = {s ∈ S|s ∈ T ∨ ∃s′ ∈ T such that (s, s′) ∈ R}
– RT = {(s1, s2) ∈ R|s1 ∈ T, s2 ∈ ST }

Thus, a distributed computation node i in the distributed model checking paradigm
contains all states from some subset T of S(called core states) and their immediate pre-
decessors ST \ T (called border states). Thus, any set of states, along with its vertex
separator with respect to the rest of the Kripke structure, contains a fragment for as-
sumption based distributed model checking. A set of vertices V is said to be a vertex
separator of T with respect to S if all paths from S \ T to T pass through some vertex
in V . Now, we will present results on the size of separators for BHDKS.

5.1 Polynomial Separators for BHDKS

We will first show that the size of the separator of an arbitrary subset of the state space
of a BHDKS is at most polynomially (in the number of propositions in the Kripke
structure) larger than the subset itself.

Theorem 3. Given any set T ⊂ S of the state space of a k - Bounded Hamming Dis-
tance Kripke structure K = (S, R) with log(n) propositions, the size of the smallest
separator V of T with respect to S is no more than |T |.(log(n))k.

Proof. For each state t ∈ T , consider the neighbours of t. As shown earlier, N(t) ≤
(log(n))k. Clearly,

⋃
t∈T N(t) is a separator of T with respect to S. Hence, the size of

the smallest separator of T = |V |
≤ |

⋃
t∈T N(t)|

≤
∑

t∈T |N(t)|
≤ |T |.(log(n))k.

Corollary 1. Given any set T ⊂ S of the state space of a k - Bounded Hamming
Distance Kripke structure K = (S, R) with log(n) propositions, the size of the fragment
associated with T is no more than |T |.(1 + (log(n))k).
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Proof. Any set of states with its separator with respect to the rest of the Kripke structure
contains a fragment.

This shows that the size of the state space which needs to be put at one node of the
distributed computation grows only polynomially in the number of propositions in the
Bounded Hamming Distance Kripke structure. It is noted that this distribution can com-
pute the separators for only the reachable set of states in T , which can be useful if the
reachable set is significantly small.

5.2 Hypercube Based Fragmentation

Now, we present another approach to distribute the state space which shows that
BHDKS are very suitable for distributed computation in a hypercube grid. We prove
the following results on the hypercube based partition in this section:

– A k - BHDKS with log n atomic propositions can be embedded in a l -hypercube
as long as l < log(n)/k.

– When embedded in a l-dimensional hypercube of distributed nodes, the size of the
separator for the core set of states, mapped to each node in the distributed system,
is no more than l

2l .n.
– The separator for the set of core states associated with any node then lie only on the

adjacent nodes of the hypercube. Also, there exist several states in the core which
do not have any transitions connecting them to states outside this node.

– Thus, the size of the state space of the fragment (core and border) associated with
each distributed node is given by l+1

2l .n. Thus, the ratio of the border states to the
core states is only l < log n as opposed to a ratio of (log n)k in the polynomial
fragmentation case.

– The partition ensures that only neighboring nodes in the hypercube grid need to
interchange any information during the operation of the distributed model checking
algorithm.

Construction of the Partitioning. We select d = 2l centers which are symmetrically
placed d points, P1, P2 . . . Pd, using the Hamming distance as a metric. It is easy to
verify that these d points exist whenever d = 2l for any l < log(n), where log(n) is the
number of propositions.

– 000 . . .000 : 0
– 000 . . .001 : 1
– 000 . . .010 : 2
– 000 . . .011 : 3
– . . . . . . . . .
– . . . . . . . . .
– 111 . . .111 : 2l − 1

Using this list of binary numbers of length l, we generate the points Pi by replacing
each 0 by the string made of (log(n)/l) zeroes and similarly each 1 is replaced by the
string made of (log(n)/l) ones. The case of l = 2 is shown in Fig. 4.
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P0
Partition around 00

P1
Partition around 01

P2

Partition around 10

P3
Partition around 11

Fig. 4. The figure shows the distribution of states among 4 subsets - a 2-hypercube. The center of
each subset is a Pi with the binary representation corresponding to 00,01,10 or 11 respectively in
our list. For log(n) = 6, these may be 000000, 000111, 111000 and 111111.

It can be observed that these 2l centers satisfy the following:

– ∀i∃j such that H(Pi, Pj) = log(n)/l
– ∀i ̸ ∃j ̸= i such that H(Pi, Pj) < log(n)/l.

Given a state s in the Kripke structure, L(s) associates a binary label with s. We de-
fine the partition PHamming = {Sh

0 , Sh
1 , . . . Sh

d } such that s ∈ Sh
i iff ∀j ̸= i, H(s, Pi)

< H(s, Pj), or ∃j ̸= iH(s, Pi) = H(s, Pj) and generate fair partition(i, j) = i. gen-
erate fair partition returns i or j with equal probability.These conditions ensure that the
sets in the partition are disjoint as well as balanced. The generate fair partition ensures
the points equidistant from more than one Pi to be distributed in a balanced manner
among the nodes. Each Sh

i is associated with the ith node of the distributed system
as its core set of states. We will later add the separator of this core set of states with
respect to the rest of the Kripke structure as the set of border states. We illustrate such
a partition by a small example.

An Example of Hypercube Fragmentation. Consider Fig. 5 which corresponds to the
case with l = 2. The sets S1, S2, S3 and S4 are formed as before by dividing the state
space into 4 parts around 4 equidistant centers 02p, 0p1p, 12p and 1p0p respectively as

S1

S4
S3

S2

Fig. 5. For each subset around a point, it is connected only to two other sets and not to the
diagonally opposite points
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before. These form the core states of the fragment. We now motivate our next result by
showing that for sufficiently large Kripke structures, if we take these Pis as the corners
of a 2-D hypercube (square), then there can be no transitions between the distributed
nodes along the diagonals.

Theorem 4. For a BHDKS Kripke structure split uniformly around four centers
02p, 0p1p, 12p and 1p0p, there can be no transition along the diagonal as long as p > k.

Proof. Suppose the contrary; without loss of generality, assume that there is a transition
from the set around 02p to the set around 12p say from x to y. Then, H(x, y) ≤ k.
Also, by construction, H(x, 02p) ≤ p/2 and H(y, 12p) ≤ p/2. By triangle inequality,
H(y, 02p) + H(y, 12p ≥ H(02p, 12p i.e., H(y, 02p) ≥ 2p− p/2.

Again, by triangle inequality, H(x, y) + H(x, 02p) ≥ H(y, 02p)
i.e., H(x, y) ≥ H(y, 02p) − H(x, 02p)
i.e., H(x, y) ≥ 2p − p/2 − p/2
i.e., H(x, y) ≥ p

Thus, as long as p > k, there can be no transition along the diagonal. So the size of
each fragment is at most 3 times the size of the core set at each node i.e., (2 + 1)/22 of
the whole Kripke structure.

Bound on the Size of Fragment Associated with Each Distributed Node. Now con-
sider a state space split into 2l parts in a l-dimensional hypercube. Recall that we map
each Sh

i to the node i of the hypercube, formed naturally by the binary encoding of i .
We show that there can be no transition along any of the diagonals of this hypercube.
The case of a 3-D cube is illustrated in Fig. 6

S2

Fig. 6. A 3-D cube. There can be no transitions along any of the diagonals.

Theorem 5. For a k-BHDKS Kripke structure with (log(n)) propositions split uni-
formly around 2l centers 0lp, 0(l−1)p1p, . . . . . . 0p1(l−1)p, 1lp (where p = (log(n)/l) )
and p > k, there can be no transition along any of the diagonals of this l-dimensional
hypercube.

Proof. Suppose the contrary; without loss of generality, assume that there is a transition
from the set around θ to the set around δ say from x to y. Then, H(x, y) ≤ k Also,
δ, θ are along some diagonal and not adjacent. So, H(θ, δ) ≥ 2p. By construction,
H(x, θ) ≤ p/2. and H(y, δ) ≤ p/2. By triangle inequality H(y, θ) + H(y, δ) ≥
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H(θ, δ) i.e., H(y, θ) ≥ 2p − p/2 (assuming the worst case that δ and θ are as close as
possible without being neighbors in the l-dimensional hypercube) .

By triangle inequality, H(x, y) + H(x, θ) ≥ H(y, θ) i.e., H(x, y) ≥ H(y, θ) −
H(x, θ)

i.e., H(x, y) ≥ 2p − p/2 − p/2
i.e., H(x, y) ≥ p

Thus, as long as p > k, there can be no transition along the diagonal. Hence, there
cannot be a transition along any diagonal of the l-dimensional cube.

Corollary 2. The size of the separator of the set associated with each distributed node
in the l-Dimensional hypercube is at most l times the size of the largest possible core
set at each node i.e., l

2l .n.

Proof. Each node in the l-dimensional hypercube has transitions only to the neighbour-
ing nodes in the hypercube. In an l-dimensional hypercube, there are l neighbours. By
construction, each neighbour has no more than 1

2l .n core states. Hence, the size of the
separator of a node ≤ sum of the size of the core sets associated with all the neighbour-
ing nodes in the hypercube (since the border states of a node do not have any transitions
to any other node)≤ l

2l .n

Corollary 3. The size of the fragment associated with each node in the l-Dimensional
hypercube is at most (l + 1) times the size of the largest possible core set at each node
i.e., (l+1)

2l .n.

Proof. A set and its separator form a fragment corresponding to that set.

Corollary 4. The fragment associated with each node in the distributed system can be
made as small as (2.log(n)

k ).n1−1/k in the size of the k-BHDKS

Proof. We know that the size of a fragment is bounded by (l+1)
2l .n, as long as l <

log(n)/k. Let us choose: l = (log(n)/k)− 1. Then the size of the fragment is bounded
by (l+1)

2l .n = (2.log(n)
k ).nl−1/k.

At first sight one might feel that the hypercube based approach produces fragments
larger than the simple subset construction presented earlier. However, the hypercube
based approach trades off the size of the fragment for both a structure in the resulting
partition and the greater ratio of core to fragment states in each node, which implies
that less of the state space has to be copied across multiple nodes. Also, because of the
small value of k and the large values of n the result is practically significant for model
checking; e.g., for a 220 state Kripke structure, one could partition it into 24 nodes each
of size 216 for k = 4. We remark here that the hypercube based partitioning not only
provides a bound on the size of the fragment but also ensures that the communication
among the nodes of the distributed computation having these fragments occurs only
along the edges of the hypercube and not along its diagonals. As such, it also suggests
the architecture of the distributed system and bounds the cost of the links required to
connect these distributed nodes.
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An important point to note is that the traditional way of recursively finding vertex
separators [10] of the underlying graph to break it into smaller graphs is not feasible
for the case of BHDKS. It is a well known result that the existence of O(n1−ϵ) ver-
tex separator for a class of graphs implies that the class of graphs has no more than
constant degree for each vertex. However, we know that the BHDKS vertex degree
polylogarithmic in the number of vertices ((log n)k). As such, BHDKS do not have
good vertex separators. Our hypercube based fragmentation approach avoids the con-
struction of vertex separators and actually creates fragments O(n1−ϵ) in size, where
ϵ = 1/k, by exploiting the difference between “good” fragments and “good” vertex
separators.

6 Experimental Results

We used the Cyc public database [9,11] and the CMBSLib benchmark [12] to study the
performance of the hypercube based partitioning method. We took all of the thousand
biochemical reactions for the Humancyc and the Ecocyc reaction pathway databases
and computed an upper bound on the size of the fragment in the hypercube based frag-
mentation of the Kripke structure for these reaction pathways. We counted the number
of edges into the core state (around the center 1111...11) using on-the-fly traversal of
the state space and then used the number of edges as an upper bound on the number of
border states. The upper bound on the size of the fragment clearly shows that the size of
the fragment obtained using our worst case analysis is slightly larger than that obtained
in experimental results (though of the same order).

We also took the boolean biochemical benchmark systems in CMBSLib benchmark
[12] and calculated the exact size of the fragment using hypercube based partitioning
method. These results indicate that the size of the fragment built using hypercube based
partitioning method is of the same order as the size of the core around which it is built.

Table 1. HumanCyc 1120 atoms and EcoCyc 1313 atoms: the ratios are approximate

Sl
No

Database Radius
of the
Frag-
ment

Number of States in
the core

Maximum number of
states in the fragment

Ratio of fragment
to the core

1 HumanCyc 8 60321482688944611644 58218118459069712450424 965
2 HumanCyc 9 7459853563127158123804 7198881888172413564515156 965
3 HumanCyc 10 829547867699812679324780 800431570432559915098596984 964
4 HumanCyc 11 83785702021492624364150540 80835123199556021465682097364 964
5 HumanCyc 12 7750316948401178304236797860 7476468464640846435077137076096 964
6 EcoCyc 8 215766787047246662253 286658426283477266973032 1328
7 Ecocyc 9 31310453270114925645193 41591878653908316107275044 1328
8 Ecocyc 10 4086057570662140265020569 5427030699859074477210284960 1328
9 Ecocyc 11 484389284294462960011031017 643265834966726583668110535208 1327
10 Ecocyc 12 52597289383826851902453164625 69838841881773224220828914800104 1327



Adapting Biochemical Kripke Structures for Distributed Model Checking 121

Table 2. Fragmentation results for the CMBSLib Benchmark: http://contraintes.inria.fr/
CMBSlib/

Sl
No

Benchmark Hamming
Diameter

Size of
core

Size of border Fraction of core to
fragment size

1 Circadian oscillations 2 10 59 0.1449
2 Circadian oscillations 3 51 127 0.2865
3 Circadian Oscillations 4 140 149 0.48445
4 Circadian Oscillations 5 251 102 0.7110
5 Circadian Oscillations 6 333 41 0.8904

6 Cell Division Cycle 2 7 25 0.2187
7 Cell Division Cycle 3 29 48 0.3766
8 Cell Division Cycle 4 71 63 0.5299
9 Cell Division Cycle 5 126 59 0.6811
10 Cell Division Cycle 6 179 41 0.8136

It shows that the hypercube based approach performs better than our worst case bounds
on real benchmarks. 3

7 Conclusion and Future Work

In this paper, the focus has been on showing that the biochemical Kripke structures are
BHDKS and are very amenable to fragmentation. In particular, it is shown that such
Kripke structures can be divided into fragments as small as polynomial in the number
of atomic propositions present in the Kripke structure. The hypercube algorithm tends
to distribute the exponential state space in a uniform manner, and one may raise the
question as to the benefit of this exercise when the reachable state space is small. A
simple heuristic of merging those nodes, which can be merged into one without violat-
ing the bound on the size of the core set (n/2l), helps to handle this scenario when the
distribution of the reachable state space in the hypercube is not uniform.

In particular, our explicit distributed construction of the state space partitioning as-
sumes that there is a number close to log n which has factors that can be used as l –
the dimension of the embedding hypercube. A naive recursive bi-partitioning approach
which splits the entire state space around two maximally separated points in the Ham-
ming distance space can overcome this difficulty. However, an explicit centralized con-
struction of the state space for partitioning would defeat the purpose of the distributed
model checker. Future directions of research include the development of distributed al-
gorithms to distribute the reachable state space onto a hypercube. Also, the choice of
the hypercube in which the system is embedded and the assignment of different embed-
dings onto the same hypercube (by changing the order of propositions in the state space)
needs to studied. In short, BHDKS are very suitable for bounded model checking. Ham-
ming Distance Kripke structures are also very suitable for Bounded Model Checking.

3 The result of the benchmark differs from that of the public databases because we abstract
all the reactions in the public databases for nondeterministic vanishing of reactants after the
reactions to illustrate a worst case scenario.
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