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AI reaches human-level accuracy on benchmark 
datasets
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Going deeper with convolutions.  
(Inception) C Szegedy et al, 2014 Face Detection.  Taigman et al, 2014

ImageNet Classification with Deep Convolutional 
Neural Networks. Krizhevsky et al, 2012 



AI reaches human-level accuracy on benchmark 
datasets

3

Solving CAPTCHA  Goodfellow et al, 2013

Google I/O, 2017

Microsoft, 2017

Switchboard 
benchmark



More recent results
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Learning atoms for materials discovery. Zhou et. al. (PNAS), 2018



More recent results
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Learning atoms for materials discovery. Zhou et. al. (PNAS), 2018



AI in Adversarial Settings

Machine learning very susceptible 
to adversarial attacks.
Szegedy et al,  2013, 2014



AI in Adversarial Settings

Machine learning very susceptible 
to adversarial attacks.
Szegedy et al,  2013, 2014

One pixel attack for fooling deep neural 
networks. Su et. al., 2017



AI in Adversarial Settings

Machine learning very susceptible 
to adversarial attacks.
Szegedy et al,  2013, 2014

Only allowed to modify the value of 1 pixel.  70.97% of the natural images 
can be perturbed to at least one target class by modifying just one pixel with 
97.47% confidence on average.                                              
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Learned Control
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Resilience to Adversarial Attacks
MILCOM’18, NATO-SET’18, 
SafeML/ICLR’19

Human
User

Explanations 
NASA FM’17, JAR’18, 
NeurIPS’18, ConsciousAI/AAAI’19

Ongoing Work
• U.S. Army Internet of Battlefield 

Things
• DARPA Assured Autonomy
• DARPA Competency-Aware 

Machine Learning 
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Formal Contracts on Feedforward Neural 
Networks
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y

x1 x2

Example Specification. 

Assumption:  !" ≤ $" ≤ %" ∧ !' ≤ $' ≤ %'
Guarantee:    !( ≤ ) ≤ %*

y

x1
x2

Assumption Guarantee

+($", $') /($", $', ))

Encapsulating ML components in 
A/G contracts can enable traditional 
Design by Contract approaches.



Formal Contracts on Feedforward Neural 
Networks
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y

x1 x2

Example Specification. 

Assumption:  !" ≤ $" ≤ %" ∧ !' ≤ $' ≤ %'
Guarantee:    !( ≤ ) ≤ %*

Output Range Analysis for Deep Feedforward Neural Networks. Souradeep Dutta, Susmit 
Jha, Sriram Sankaranarayanan, Ashish Tiwari. NASA Formal Methods (NFM), 2018 

Implemented in publicly available tool since 
January, 2018 : Sherlock

Key Idea:  Can we improve scalability by 
combining local search (linear programming + 
gradient descent) with sparse calls to global 
search (mixed integer linear programming) ?

Sherlock: A Tool for Verification of Deep Neural Networks. Dutta et. 
al. AAAI Spring Symposium on Verification of Neural Networks, 2019. 

https://github.com/souradeep-111/sherlock

https://github.com/souradeep-111/sherlock


Combining local search and MILP
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! "

"

Active

Inactive
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! "

"

Polytope 
corresponding to 
activation pattern

Combining local search and MILP

Active

Inactive
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! "

"

Solve LP to reach extremal 
corner

Combining local search and MILP

Polytope 
corresponding to 
activation pattern
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! "

"

Combining local search and MILP
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! "

"

Combining local search and MILP

Use gradient to move to next activation 
pattern

In some cases, gradient based local search 
works so well, that we skip LP step.
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! "
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A local optimum

Combining local search and MILP
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! "

"

Combining local search and MILP

A local optimum
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! "

"
Call to MILP verifier

Combining local search and MILP
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! "

"

Again local search
followed by MILP verifier

Combining local search and MILP



Performance compared to Reluplex and MILP
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Sherlock: A Tool for Verification of Deep Neural Networks. Dutta et. 
al. AAAI Spring Symposium on Verification of Neural Networks, 2019. 



Closed-loop validation with NN controllers

Key idea: Combine neural network range estimation with reachable set computation 
for dynamical systems. Dovetail between
• Estimate range of control input
• Estimate range of next state (accelerate by taking multiple steps, more approximate)

Xin Chen, Sriram Sankaranarayanan, and Erika Abraham.
FLOW* 1.2: More Effective to Play with Hybrid Systems.

Learning and Verification of Feedback Control Systems using Feedforward Neural Networks. Souradeep Dutta, Susmit Jha, 
Sriram Sankaranarayanan, Ashish Tiwari. IFAC Conference on Analysis and Design of Hybrid Systems, 2018
Sherlock - A Tool for Verification of Neural Network Feedback Systems: Demo Abstract. (Best Demo Award) . Dutta et. al. 
22nd ACM International Conference on Hybrid Systems: Computation and Control (HSCC), 2019
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Specification: Stability



Closed-loop validation with NN controllers

Key idea: Combine neural network range estimation with reachable set computation 
for dynamical systems. Dovetail between
• Estimate range of control input
• Estimate range of next state (accelerate by taking multiple steps, more approximate)

Learning and Verification of Feedback Control Systems using Feedforward Neural Networks. Souradeep Dutta, Susmit Jha, 
Sriram Sankaranarayanan, Ashish Tiwari. IFAC Conference on Analysis and Design of Hybrid Systems, 2018
Sherlock - A Tool for Verification of Neural Network Feedback Systems: Demo Abstract. Dutta et. al. 22nd ACM 
International Conference on Hybrid Systems: Computation and Control (HSCC), 2019
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Specification: Stability



Where do we get specifications from?
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Extracting Safety Property from Data: 
Mining Safe Driving Patterns

7/16/19 38

Safe Driving is more than adherence to traffic rules.

If we observe how ‘safe’ human drivers drive, can we 
transfer these habits/patterns to an autonomous  
car?

timestamp,angle,torque,speed,throttle,brake
1479424215873184606,0.00035957866912,0.375,23.0033496401
1479424215877284689,0.000717059237998,0.375,23.0039188398
1479424215880976321,0.00103893906341,0.375,23.0044313542

1479424215922817911,0.00349065847695,0.394737094117,23.0073100866
1479424215927281227,0.00349065847695,0.380823288686,23.0060736059
1479424215930775951,0.00349065847695,0.369925094231,23.0060070992
1479424215972815517,0.00349065847695,0.36386123579,23.0083332062
1479424215977378050,0.00349065847695,0.349617492104,23.0083332062
1479424215980916687,0.00349065847695,0.33856983926,23.0083332062
1479424216022820692,0.00466956372537,0.479716434815,23.0064573783
1479424216027309701,0.00506125153205,0.493742721304,23.0058341399
1479424216030737492,0.00523598771542,0.491111238869,23.0051610113
1479424216073039735,0.00555371235876,0.522755351565,22.996972343
1479424216077185305,0.00591556852827,0.548671390895,22.9998519908
1479424216080827865,0.00623351662237,0.571442745942,23.0023822186
1479424216122856036,0.012229296689,0.708619621716,23.0157470729
1479424216127297778,0.0133895580247,0.73631882096,23.0163624604
1479424216130778849,0.0142974665448,0.742006460967,23.015955927
1479424216172794699,0.0217718389734,0.677617815283,23.0115497083
1479424216177269210,0.0229428882819,0.663639446207,23.0121712441
1479424216180687241,0.0238374389065,0.652961536493,23.0126460279
1479424216222706305,0.0319459443015,0.627780242013,23.0204110546
1479424216227198494,0.0327277701736,0.585784626578,23.019788622

1479424216230735818,0.0331612564623,0.5625,23.0190077045
1479424216272749590,0.0328959117777,0.399492153054,23.0147337254
1479424216277232525,0.0325053001336,0.343541126177,23.015976778
1479424216280736012,0.0322000511415,0.29981740514,23.016948179
1479424216322795445,0.0302828893188,0.209426056743,23.0333328247
1479424216327284030,0.0298919886907,0.195427966481,23.0333328247

1479424216330780633,0.029587548536,0.1875,23.0335972054
1479424216372784939,0.0279252678156,0.196471379804,23.0464384649

220GB of driving data: Instrumented 
car (2016 Lincoln MKZ) driving along 
El Camino Real (San Francisco Bay 
Area). A mixture of turns and straight 
driving.

How does acceleration and 
speed change during 
initiation, continuation and 
termination of a turn for a 
safe driver?



Temporal Logic

7/16/19 39

• Temporal logics specify patterns that timed behaviors of systems may or may not 

satisfy. 

• Linear Temporal Logic (LTL) specify property of discrete sequences of states. 

• Based on logic operators (¬, ∧, ∨), and 

• temporal operators: “next”, “always” (G), “eventually” (F) and “until” (U) 

• Extension of LTL with continuous time and real-valued signals 

• Reasoning about continuous signals: steering angle of a car

LTL :  G ( torque applied à F ( turn complete ) )

MTL :  G ( torque applied à F[0,10] ( turn complete ) ) [real time]

STL :  G ( torque ≥ 0 à F[0,10] ( turn angle ≥ 90 ) ) [real valued + real time]



Learning Signal Temporal Logic

7/16/19 40

Given a set of traces, learn parameter values for the template STL formula that is consistent 
with all the examples. 

Challenge

Multiple possible values for 
the same parameter.
Select tightest parameter!



Learning Using Tightness Metric
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Constrained Multiobjective Optimization Problem 



Satisfaction of STL
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Qualitative Robustness



Learning STL

7/16/19 43

!"#$%&' (" &)'#* + ∶ -[/,/.2] 4 ≥ 6 from set of traces example Τ
Let us assume that 6 = 2 is the tightest parameter for Τ

Robustness metric Absolute value of robustness metric

2,02,0

: +, (
|: +, ( |

Find 
6 <ℎ>< ?@A@?@BCD |: +(F), ( |

Problems:
- Non-differential close to 
optimum
- Could learn false property even 
when close to optimum

6 6



Learning STL with Tightness Metric
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!"#$%&' (" &)'#* + ∶ -[/,/.2] 4 ≥ 6 from set of traces example Τ
Let us assume that 6 = 2 is the tightest parameter for Τ

Practical Metric (Correctness + differentiability for optimization)

2,0

What function :would have this 
characteristic ? 

5
4
3
2
1
0
-1
-2

0.5

; = 1 [=>?@]
;
= 10 [BC@@D]
; = 20 [C@E]

6

Tightness Metric:

TeLEx: Passive STL Learning Using Only Positive Examples. Susmit Jha, Ashish Tiwari, Sanjit A. Seshia, Natarajan 
Shankar, and Tuhin Sahai. 17th International Conference on Runtime Verification (RV), 2017



Learning Using Tightness Metric
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Unconstrained Scalar Optimization Problem 

Constrained Multiobjective Optimization Problem 



Example Results
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Safe Driving is more than adherence to traffic rules.

220GB of driving data: 
Instrumented car (2016 
Lincoln MKZ) driving along 
El Camino Real (San 
Francisco Bay Area). A 
mixture of turns and 
straight driving.



Example Results
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Safe Driving is more than adherence to traffic rules.

220GB of driving data: 
Instrumented car (2016 
Lincoln MKZ) driving along 
El Camino Real (San 
Francisco Bay Area). A 
mixture of turns and 
straight driving.



Impact of Smoothness of !

7/16/19 48

TeLEx: Passive STL Learning Using Only Positive Examples.
Susmit Jha, Ashish Tiwari, Sanjit A. Seshia, Natarajan Shankar, and Tuhin Sahai.
17th International Conference on Runtime Verification (RV), 2017
https://github.com/susmitjha/TeLEX

Bombara, Giuseppe, Cristian-Ioan Vasile, Francisco Penedo, Hirotoshi Yasuoka, and Calin 
Belta. "A decision tree approach to data classification using signal temporal logic." 
In Proceedings of the 19th International Conference on Hybrid Systems: Computation and 
Control, pp. 1-10. ACM, 2016.

https://github.com/susmitjha/TeLEX


Application to Safe Autonomous Control
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Trusted Neural Networks for Safety-Constrained Autonomous Control.
Shalini Ghosh, Amaury Mercier, Dheeraj Pichapati, Susmit Jha, Vinod Yegneswaran, Patrick 
Lincoln. SCA/ICML, May, 2018

Proximal gradient-descent

Verma, A., Murali, V., Singh, R., Kohli, P., & Chaudhuri, S. Programmatically interpretable 
reinforcement learning. ICML, 2018



Rest of the Talk

50

Trust
• Global Assume/Guarantee Contracts on DNNs
• Extracting and Integrating Temporal Logic into 

Learned Control

Interpretability
• Inverse Reinforcement Learning of 

Temporal Specifications 

Resilience
• Adversarial Robustness



Need for explanation

7/16/19 51

Why did we take the San Mateo bridge instead of the Bay Bridge ?

• This route is faster.
• There is traffic on Bay 

Bridge.
• There is an accident just 

after Bay Bridge backing 
up traffic.

Scalable but less interpretable : 
Neural Networks, Support Vector 
Machines

Interpretable but less scalable: 
Decision Trees, Linear Regression 



Local Explanations of Complex Models
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Not reverse engineering an ML model but finding explanation locally for one decision.



Local Explanations of Complex Models
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Sufficient Cause

Not reverse engineering an ML model but finding explanation locally for one decision.



Local Explanations of Complex Models

7/16/19 54

Simplified Sufficient 
Cause

Not reverse engineering an ML model but finding explanation locally for one decision.



Local Explanations in AI

7/16/19 55

Simplified Sufficient 

Cause

Formulation in AI:

• Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 

"Why Should I Trust You?: Explaining the Predictions of 

Any Classifier." International Conference on Knowledge 
Discovery and Data Mining. ACM, 2016.

• Hayes, Bradley, and Julie A. Shah. "Improving Robot 

Controller Transparency Through Autonomous Policy 

Explanation." International Conference on Human-Robot 
Interaction. ACM, 2017.

Measure of how well g approximates f

Measure of complexity of g

Not reverse engineering an ML model but finding explanation locally for one decision.



Model Agnostic Explanation through 
Boolean Learning 

7/16/19 56

Why does the path not go 
through Green?

Let each point in k-dimensions 
(for some k) correspond to a 
map.

Maps in which optimum 
path goes via green
Maps in which optimum 
path does not go via green

Find a Boolean formula !
such that 
! ⇔ #$%ℎ '()%$*) +
! ⇒ #$%ℎ '()%$*) +



Explanations as Learning Boolean Formula

A*

!"#$%&'( : 
Using explanation vocabulary
Ex: Obstacle presence

!)*"+, : 
Some property of the output
Ex: Some cells not selected

-./01234 ⇒ -67.89
-./01234 ⇔ -67.89



How difficult is it? Boolean formula learning

50x50 grid has 2"#$%#$ possible explanations even if 
vocabulary only considers presence/absence of obstacles.

Scalability: Usually the feature space or vocabulary is large. 
For a map, its order of features in the map. For an image, it is 
order of the image’s resolution. 

Guarantee: Is the sampled space of maps enough to generate 
the explanation with some quantifiable probabilistic 
guarantee?

&'()*+,- ⇒ &/0'12
&'()*+,- ⇔ &/0'12



How difficult is it? Boolean formula learning

50x50 grid has 2"#$%#$ possible explanations even if 
vocabulary only considers presence/absence of obstacles.

Scalability: Usually the feature space or vocabulary is large. 
For a map, its order of features in the map. For an image, it is 
order of the image’s resolution. 

Guarantee: Is the sampled space of maps enough to generate 
the explanation with some quantifiable probabilistic 
guarantee?

Theoretical Result: 

Learning Boolean formula even approximately is hard.  3-
DNF is not learnable in Probably Approximately Correct 
framework unless RP = NP.

&'()*+,- ⇒ &/0'12
&'()*+,- ⇔ &/0'12



Two Key Ideas

Active learning Boolean formula !"#$%&'( and not learning from fixed sample.

Explanations are often short and involve only few variables !

1. Vocabulary is large.
2. How many samples (and what 

distribution) to consider for 
learning explanation ?

3. Learning Boolean formula with 
PAC guarantees is hard.



Two Key Ideas

Active learning Boolean formula !"#$%&'( and not learning from fixed sample.

Explanations are often short and involve only few variables !



Two Key Ideas

Active learning Boolean formula !"#$%&'( and not learning from fixed sample.

Explanations are often short and involve only few variables !

Involves only two variables.
If we knew which two, we had 
only 2*+ = 16
possible explanations. 

How do we find these relevant 
variables?



Actively Learning Boolean Formula

!
Evaluates assignments and returns T,F

Assignments to V
m1 = (0,0,0,1,1,0,1) 
m2 = (0,0,1,1,0,1,0)

A*

!"#$%& : 
Some property of the output
Ex: Some cells not selected

!$'()*+, (V) : 
Using explanation vocabulary
Ex: Obstacle presence



Actively Learning Relevant Variables

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

,-./0123 "& &<+8&7



Actively Learning Relevant Variables

Assignments to V
m1 = (0,0,0,1,1,0,1) 

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m1 : True



Actively Learning Relevant Variables

Assignments to V
m1 = (0,0,0,1,1,0,1) 
m2 = (0,0,1,1,0,1,0)

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m1: True, m2: False

Random Sample Till 
Oracle differs



Actively Learning Relevant Variables

Assignments to V
m1 = (0,0,0,1,1,0,1) 
m2 = (0,0,1,1,0,1,0)

m3 = (0,0,0,1,1,1,0)

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m1: True, m2: False



Actively Learning Relevant Variables

Assignments to V
m1 = (0,0,0,1,1,0,1) 
m2 = (0,0,1,1,0,1,0)

m3 = (0,0,0,1,1,1,0)

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m1: True, m2: False
m3: True



Actively Learning Relevant Variables

Assignments to V
m1 = (0,0,0,1,1,0,1) 
m2 = (0,0,1,1,0,1,0)

m3 = (0,0,0,1,1,1,0)

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m1: True, m2: False
m3: True

Hamming 
Distance = 4

Hamming 
Distance = 2



Assignments to V
m2 = (0,0,1,1,0,1,0)
m3 = (0,0,0,1,1,1,0)

m4 = (0,0,1,1,1,1,0)

Actively Learning Relevant Variables

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m2: False, m3: True
m4: True

Hamming 
Distance = 2

Hamming 
Distance = 1



Assignments to V
m2 = (0,0,1,1,0,1,0)
m3 = (0,0,0,1,1,1,0)

m4 = (0,0,1,1,1,1,0)

Actively Learning Relevant Variables

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m2: False, m3: True
m4: True

Hamming 
Distance = 2

Hamming 
Distance = 1



Assignments to V
m2 = (0,0,1,1,0,1,0)
m4 = (0,0,1,1,1,1,0)

Actively Learning Relevant Variables

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m2: False, m4: True

Hamming 
Distance = 1

Fifth variable <= is relevant !! 



Actively Learning Relevant Variables

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

m2: False, m4: True

Repeat to find all 
relevant variables



Actively Learning Relevant Variables

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

Random Sample 
Till Oracle differs

Binary Search Over 
Hamming Distance

<#(1/(1 − A)) <#(|;|)2|D|

For each assignment 
to relevant variables

Relevant variables of EFGHIJKL found with confidence M in 
N O IL(|P|/(Q − M))



Actively Learning Boolean Formula

!"#$ % &'(ℎ *ℎ+* ,-./0123 V ≡ ,-./0123 % 6ℎ787 % ≪ |;|

Build Truth Table for 
the relevant variables 
U
<=8&* >+&7: 2|A|

Used distinguishing example based 
approach from ICSE’10

BCDEFGHI found with confidence J in 
K(M N FI(|O|/(Q − J)))

Scales to ~200 variables

A PAC Learning Framework



Interpretability: Observed Time Traces

76

1. Noisy        2. Large corpus and not selected examples      3. Opportunity to query 
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Consider two autonomous agents Alice and Bob with cognition capability.

Alice can invent a novel behavior – use tree logs to try and build a bridge.

How will Bob, who is watching Alice, understand Alice’s goal and assist her ?

Alice’s mental state needs to be recreated in Bob’s brain for Bob to collaborate with Alice.

Alice Bob

Humans can undertake novel, 
collective behavior, or teamwork
Capability to communicate goals, 
plans and ideas to create shared 
intentionality

Interpretable Learning for Shared Intentionality
Inferring and Conveying Intentionality: Beyond Numerical Rewards to Logical Intentions. Susmit Jha and John 
Rushby. AAAI Spring Symposium on Conscious AI Systems, 2019
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Alice’s mental state needs to be recreated in Bob’s brain for Bob to collaborate with Alice.

Interpretable Learning for Shared 
Intentionality



Shared Intentionality: Mental Cloning?
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Alice’s mental state needs to be recreated in Bob’s brain for Bob to collaborate with Alice.

Electro-chemical representation can differ from one individual  to 
another depending on their personal characteristics and 

experiences. 

Humans do not rely on direct replication of their neural states. 

Gweon, H., Saxe, R. (2013). Developmental cognitive neuroscience of Theory of Mind. Neural 
Circuit Development and Function in the Brain: Comprehensive Developmental Neuroscience.



Communicating Using Demonstrations: 

Non-Markovian IRL
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Environment  Markov Decision Process

Noisy Expert 

Demonstrations

Inverse 

Reinforcement 

Learning Numerical Reward

Function
- Demonstrations and rewards are often non-Markovian due to mental state of the 

actor not directly modeled by environment MDP.

● Composability? , Resilience to changes in task context? Interpretability?



Communicating Using Demonstrations: 
More involved example
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1. Avoid fire (red).

2. Eventually Recharge (yellow).

3. If you touch the water (blue) then 
dry off (brown) before recharging 
(yellow).

Explicit reduction to non-Markovean
representation suffers from the curse of 
history.

a. (4 colors)^(10 time steps) = 2^20 
traces ≈ 1048576

b. #specifications = 2^(2^20) ≈ 
10^315652



Communicating Using Demonstrations: 
Temporal logic specifications
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Numerical Reward Function

● Composable
● Resilient to changes in task context
● Interpretable
● Can leverage formal methods tools



Communicating Using Demonstrations: 

Temporal logic specifications
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Numerical Reward Function

• Pnueli, Amir. "The temporal logic of programs." IEEE, 1977.
• Donzé, Alexandre, and Oded Maler. "Robust satisfaction of temporal logic over real-valued 

signals." FORMATS, 2010.

• Jha, Susmit, Vasumathi Raman, Dorsa Sadigh, and Sanjit A. Seshia. "Safe autonomy under perception 

uncertainty using chance-constrained temporal logic." Journal of Automated Reasoning 60, 2018.



Communicating Using Demonstrations: 
Specification Inference Problem
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What is ?

Like most inverse problems, this problem is underspecified.

• Intent satisfaction is Boolean. Either Alice/Bob did the task or didn’t.

• Assuming Alice is at least better at performing the task than a random action 
policy.

• Applying the principle of maximum entropy select the the distribution.
• Inspired by Maximum Entropy Principle (also used in Inverse Reinforcement 

Learning)

Specification



Communicating Using Demonstrations: 
KL Divergence
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Bernoulli 
Distribution

Satisfaction 
probability 
for Alice 
given 
dynamics

Satisfaction 
probability 
given uniformly 
random actions

Specification
Demonstrations

∝ e

Marcell Vazquez-Chanlatte, Susmit Jha , Ashish Tiwari, Mark K. Ho and Sanjit A. Seshia. 
Learning Task Specifications from Demonstrations. NeurIPS, 2018



Communicating Using Demonstrations: 
Computing posterior
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Maximum a Posteriori

max

Algorithm Sketch
If one fixes the measured sat probability, the KL-divergence term in the model is
convex in the random satisfaction rate. This enables an efficient lattice based search for
the most probable specification.

Marcell Vazquez-Chanlatte, Susmit Jha , Ashish Tiwari, Mark K. Ho and Sanjit A. Seshia. 
Learning Task Specifications from Demonstrations. NeurIPS, 2018



Communicating Using Demonstrations: 
More involved example
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1. Avoid fire (red).

2. Eventually Recharge (yellow).

3. If you touch the water (blue) then 
dry off (brown) before recharging 
(yellow).

Temporal Logic Specification

H: Historically
O: Once
S: Since



A Candidate Mechanism to Computationally 
Implement Shared Intentionality
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Find Specification as Maximum a Posteriori

max

Marcell Chanlatte, Susmit Jha , 
Ashish Tiwari, Mark K. Ho and Sanjit
A. Seshia. Learning Task 
Specifications from 
Demonstrations. NeurIPS, 2018

Jha, Susmit et al. "Safe autonomy 
under perception uncertainty 
using chance-constrained 
temporal logic." Journal of 
Automated Reasoning 60, 2018

Inferring and Conveying Intentionality: Beyond Numerical 
Rewards to Logical Intentions. Susmit Jha and John Rushby.
AAAI Spring Symposium, Towards Conscious AI Systems, 2019



Interpretability / Explanation Generation 
in TRINITY
• Inferring and Conveying Intentionality: Beyond Numerical Rewards to 

Logical Intentions. Susmit Jha and John Rushby.
AAAI Spring Symposium, Towards Conscious AI Systems, 2019

• Learning Task Specifications from Demonstrations. Marcell Vazquez-
Chanlatte, Susmit Jha, Ashish Tiwari, Mark K. Ho and Sanjit A. Seshia.
Neural Information Processing Systems (NeurIPS), 2018

• Explaining AI Decisions Using Efficient Methods for Learning Sparse 
Boolean Formulae. Susmit Jha, Tuhin Sahai, Vasumathi Raman, Alessandro 
Pinto and Michael Francis.
Journal of Automated Reasoning, 2018

• On Learning Sparse Boolean Formulae For Explaining AI Decisions. Susmit 
Jha, Vasumathi Raman, Alessandro Pinto, Tuhin Sahai, and Michael Francis.
NASA Formal Methods (NFM), 2017

89



Rest of the Talk
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Trust
• Global Assume/Guarantee Contracts on DNNs
• Extracting and Integrating Temporal Logic into 

Learned Control

Interpretability
• Inverse Reinforcement Learning of 

Temporal Specifications 

Resilience
• Adversarial Robustness



Adversarial Examples in Deep Learning

91

Loss function L(θ, !"#$%& , output) with θ the parameters of the models.
Measures how good the prediction of the model is on a specific example. 

To train a neural network we compute the derivative of L according to the weights θ
and update θ in order to decrease the loss value. 

'L(θ, !"#$%& , output)
'(



Adversarial Examples in Deep Learning
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Loss function L(θ, !"#$%& , output) with θ the parameters of the models.
Measures how good the prediction of the model is on a specific example. 

To train a neural network we compute the derivative of L according to the weights θ
and update θ in order to decrease the loss value. 

To create an adversarial sample, we compute the derivative of L according to the 
input and use the result to update the pixel values in order to increase the loss 
value. 

'L(θ, !"#$%& , output)
'!"#$%&



Adversarial Examples in Deep Learning
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Loss function L(θ, !"#$%& , output) with θ the parameters of the models.
Measures how good the prediction of the model is on a specific example. 

To train a neural network we compute the derivative of L according to the weights θ
and update θ in order to decrease the loss value. 

'L(θ, !"#$%& , output)
'!"#$%&

!"#$% = !"#$% + * +!," ('L(θ, !"#$%, output)
'!"#$% )

Fast Gradient Sign Method 



Adversarial Defense by Irrelevant Factor 
Identification
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Causal Modeling

Attribution-driven Causal Analysis for Detection of Adversarial Examples. Susmit Jha et. 
al. SafeML/ICLR, 2019

Geometric Invariants

Detecting Adversarial Examples Using Data 
Manifolds. Susmit Jha, Uyeong Jang, Somesh 
Jha and Brian Jalaian. IEEE Military 
Communications Conference (MILCOM), 2018 

Manifold-based Robust Learning. Susmit Jha, 
Uyeong Jang, Somesh Jha and Brian 
Jalaian. NATO SET 262, 2018

Spectral Embedding

ISOMAP   

t-SNE

LLE



MNIST and CFAR: FGSM Attack and 
Manifold Distance
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MNIST CFAR

Used CleverHans system for generating attacks. 
Nicolas Papernot et. al.



Manifold Distance in Input Space and 

Logit Space
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Hypothesized in literature that the deeper layers of a deep neural network provide 

more linear and unwrapped manifolds in comparison to the input space. Thus, the 

task of identifying the manifold becomes easier as we progress from the input space 

to the more abstract feature spaces all the way to the logit space. 

Yoshua Bengio, Gregoire Mesnil, Yann Dauphin, and Salah Rifai. ´ Better mixing via deep representations. In International 

Conference on Machine Learning, pages 552–560, 2013.

Jacob R Gardner, Paul Upchurch, Matt J Kusner, Yixuan Li, Kilian Q Weinberger, Kavita Bala, and John E Hopcroft. Deep manifold 

traversal: Changing labels with convolutional features. arXiv preprint arXiv:1511.06421, 2015



Detection Rate Using Manifold Distance
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MNIST CFAR

The kernel density estimation can be used to measure the distance d(x) of x from the 

data manifold of training set.  Specifically, d(x) = 
!
" ∑ $%∈" '()*, )), where X is the full 

data set and k(·, ·) is a kernel function such as Gaussian or a simple L∞ or L2 norm. 



Thanks!
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Questions?


