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Al reaches human-level accuracy on benchmark

datasets

ImageNet Classification with Deep Convolutional
Neural Networks. Krizhevsky et al, 2012

| Model | Top-1

|

Top-5 |

Sparse coding [2] | 47.1%

28.2%

SIFT + FVs [24] | 45.7%

25.7%

CNN 37.5%

17.0%
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Team Year | Place | Error (top-5) | Uses external data
SuperVision || 2012 | 1st 16.4% no

SuperVision || 2012 | 1st 15.3% Imagenet 22k
Clarifai 2013 | 1st 11.7% no

Clarifai 2013 | Ist 11.2% Imagenet 22k
MSRA 2014 | 3rd 7.35% no

VGG 2014 | 2nd 7.32% no

GoogLeNet | 2014 | 1st 6.67% no

Going deeper with convolutions.
(Inception) C Szegedy et al, 2014

true positive rate
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—— DeepFace-ensemble (97.35%)
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—— TL Joint Baysian (96.33%)

—— High-dimensional LBP (95.17%)
—— Tom-vs-Pete + Attribute (93.30%)
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Face Detection. Taigman et al, 2014
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Al reaches human-level accuracy on benchmark
datasets

Image Recognition Speech Recognition
Vision Error Rate Word Error Rate
.. Switchboard
| 8.5% benchmark
6.8% .
6.1%
4.9%

Google 1/0, 2017

Microsoft recently reached a new milestone in its ability to recognize conversational speech,
achieving a 5.1% word error rate (WER). The achievement, detailed in a Sunday blog post, bests
Microsoft's previous record of 5.9% and is closer to human parity.

Microsoft, 2017
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] Privacy & Terms

Solving CAPTCHA Goodfellow et al, 2013




More recent results

Materials Database Atom Vector
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Learning atoms for materials discovery. Zhou et. al. (PNAS), 2018




More recent results

oooooooo

I
shass

' —
_-—-J-:J~j

3l

;

l

|

ok

Carbon Fami ',/
¥

AClive Metals
Active Nonmetals

T
"
1,

. n : = I.

12345678 91011121314151617181920
Vector Dimensions

PC2(10.76%)

Group
el
ol
il C
oV

oVl
Vil

PC4(9.57%)

Learning atoms for materials discovery. Zhou et. al. (PNAS), 2018
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Al in Adversarial Settings

Machine learning very susceptible
to adversarial attacks.

Szegedy et al, 2013, 2014




Al in Adversarial Settings

Machine learning very susceptible
to adversarial attacks.

Szegedy et al, 2013, 2014

(-
Airplane (Dog) Automobile (Dog) Automobile Cat (Dog) Dog (Ship)
(Airplane)

-

»

s

Deer (Dog) Frog (Dog) Frog (Truck) Dog (Cat) Bird (Airplane)

Ship (Truck) Horse Dog (Horse) Ship (Truck)
(Automahile)

One pixel attack for fooling deep neural
networks. Su et. al., 2017




Al in Adversarial Settings

Machine learning very susceptible
to adversarial attacks.

Szegedy et al, 2013, 2014

Airplane (Dog) Automobile (Dog) Automobile Cat (Dog) Dog (Ship)

(Airplane)
Deer (Dog) Frog (Dog) Frog (Truck) Dog (Cat) Bird (Airplane)
H . i ’
Horse (Cat) Ship (Truck) Dog (Horse) Ship (Truck)

(Automahile)

Only allowed to modify the value of 1 pixel. 70.97% of the natural images
can be perturbed to at least one target class by modifying just one pixel with
97.47% confidence on average.




Rest of the Talk

Trust
* Global Assume/Guarantee Contracts on DNNs
e Extracting and Integrating Temporal Logic into
Learned Control

Interpretability

* Inverse Reinforcement Learning o
Temporal Specifications

Resilience
e Adversarial Robustness




TRINITY: Trust, Resilience and Interpretability

@ Demonstrations

Specifications




TRINITY: Trust, Resilience and Interpretability

Demonstratlons
Specification
Mining
RV17

Spec1F1cat10ns




TRINITY: Trust, Resilience and Interpretability

Demonstratlons

Specification
[ Mining
o RV17
SPeC1F1cat10nS\

Uncertainty-aware Synthesis from
Chance-constrained STL
FORMAT’16, NASA FM’16,
FORMATS’18, JAR’18, ACC’19




TRINITY: Trust, Resilience and Interpretability

el |
.
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Demonstrations
Specification
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RV17
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TRINITY: Trust, Resilience and Interpretability

T Verification: ML model + closed loop
o NASA FM’18, ADHS’18, HSCC’19, VNN/AAAI'19
B : ~=
Demonstrations
Specification
Mining
RV17
Logic-guided
Spec1F1cat10ns GAnd Robust RL

Uncertainty-aware Synthesis from
Chance-constrained STL
FORMAT’16, NASA FM’16,
FORMATS’18, JAR’18, ACC’19

DISE/ICML’ 18
i EAIIerton Control’18 World

14



TRINITY: Trust, Resilience and Interpretability

T Verification: ML model + closed loop
\ -~ = NASA FM’18, ADHS’18, HSCC’19, VNN/AAAI'19
Demonstrations Resilience to Adversarial Attacks
Sp.ec.lflcatlon MILCOM’18, NATO-SET’18,
Mining SafeML/ICLR’19
RV17
Logic-guided
Spec1 fi catlons GAnil Ribust RL

Uncertainty-aware Synthesis from
Chance-constrained STL
FORMAT’16, NASA FM’16,
FORMATS’18, JAR’18, ACC’19
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TRINITY: Trust, Resilience and Interpretability

T Verification: ML model + closed loop
LD = NASA FM’18, ADHS’18, HSCC’19, VNN/AAAI'19
Demonstrations Resilience to Adversarial Attacks
Specification MILCOM’18, NATO-SET’18,
Mining SafeML/ICLR’19
RV17
Logic-guided
Spec1 fi catlons GAnil Ribust RL
Uncertainty-aware Synthesis from ; DISE/ICML'18
Chance-constrained STL Allerton Control'1g) | World
FORMAT’16, NASA FM’16,

FORMATS’18, JAR'18, ACC’19

Explanations >
NASA FM’17, JAR18, J L Human
NeurlPS’18, ConsciousAl/AAAI'19 User
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TRINITY: Trust, Resilience and Interpretability

T Verification: ML model + closed loop
\ L~ = NASA FM’18, ADHS’18, HSCC’19, VNN/AAAI'19
Demonstrations Resilience to Adversarial Attacks
Sp.ec.lflcatlon MILCOM’18, NATO-SET’18,
Mining SafeML/ICLR’19
RV17
Logic-guided
Spec1F1cat10ns e

And Robust RL
DISE/ICML’ 18
Allerton Control’18 World

Uncertainty-aware Synthesis from
Chance-constrained STL

Ongoing Work
e U.S. Army Internet of Battlefield
Things
* DARPA Assured Autonomy
* DARPA Competency-Aware
Machine Learning
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Rest of the Talk

Trust

* Global Assume/Guarantee Contracts on
DNNs

e Extracting and Integrating Temporal Logic into /r

Learned Control /'3 -
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Interpretability

* Inverse Reinforcement Learning o
Temporal Specifications

Resilience
e Adversarial Robustness
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Formal Contracts on Feedforward Neural
Networks

y Example Specification.
Assumption: L1 < X1 < U]_ /\LZ < X9 < Uz

Guarantee: L, <y < U,

\\\ Assumption |-~ Guarantee
%< ><§< )< ) ¢Gux) | [YEm)

|
O@O
\ // Encapsulating ML components in

A/G contracts can enable traditional
t t Design by Contract approaches.

19



Formal Contracts on Feedforward Neural

Networks

Example Specification.
Assumption: Ll < X1 < U1 /\LZ < X9 < UZ

Guarantee: L, <y < U,

\\\ Key Idea: Can we improve scalability by
combining local search (linear programming +

”‘\?@

Xl X2

gradient descent) with sparse calls to global
search (mixed integer linear programming) ?

O

Implemented in publicly available tool since
January, 2018 : Sherlock

https://github.com/souradeep-111/sherlock

Output Range Analysis for Deep Feedforward Neural Networks. Souradeep Dutta, Susmit
Jha, Sriram Sankaranarayanan, Ashish Tiwari. NASA Formal Methods (NFM), 2018

Sherlock: A Tool for Verification of Deep Neural Networks. Dutta et.
al. AAAI Spring Symposium on Verification of Neural Networks, 2019.

20


https://github.com/souradeep-111/sherlock

Combining local search and MILP

‘ Active
O Inactive

21



Combining local search and MILP

(z1,x2)

Polytope
corresponding to
activation pattern

‘ Active
O Inactive
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Combining local search and MILP

(z1,x2)

Polytope
corresponding to
activation pattern

Solve LP to reach extremal
corner

23



Combining local search and MILP

[ N\~ |\ _~




Combining local search and MILP

Use gradient to move to next activation
pattern

[ N\ \
~~
=
DG,
t 1
XS In some cases, gradient based local search

works so well, that we skip LP step.

25



Combining local search and MILP




Combining local search and MILP




Combining local search and MILP




Combining local search and MILP




Combining local search and MILP

A local optimum




Combining local search and MILP

A local optimum

31



Combining local search and MILP

Call to MILP verifier

32



Combining local search and MILP

Again local search
followed by MILP verifier

33



Performance compared to Reluplex and MILP

23 cores single core
Monolithic Monolithic Reluplex

ID x k N T Ne T Ne T Ne T Ne T
Ny 2 1 100 Is 94 2.3s 24 0.4s 4 0.3s 25 9.0
N1 2 1 200 2.2s 166 3.6s 29 0.9s 71 0.8s 38 Im50s
Ny 2 1 500 7.8s 961 12.6s 236 2s 138 2.9s 257 15m59s
N3 2 1 500 1.5s 189 0.5s 43 0.6s 95 0.2s 53 12m25s
Ny 2 1 1000 3m52s 32E3 3m52s 3E3 1m20s 4.8E3 35.6s 5.3E3 1hO6m
Ns 3 7 425 4s 6 6.1s 2 1.7s 2 0.9s 2 DNC
Ne 3 4 762 3m47s 3.3E3 4md4ls 3.6E3 37.8s 685 56.4s 2.2E3 DNC
N7 4 7 731 3.7s 1 7.7s 2 3.9s 1 3.1s 2 1h35m
Ng 3 8 478 6.5s 3 40.8s 2 3.6s 3 3.3s 2 DNC
Ng 3 8 778 18.3s 114 Imlls 2 12.5s 12 4.3s 73 DNC
Niop 3 26 2340 | 50ml8s 4.6FE4 1h26m 6F4 17ml2s 2.4E4 | 18m58s 1.9E4 DNC
N1 3 9 1527 5mdds 450 55ml2s  6.4E3 56.4s 483 130.7s 560 DNC
Ni2 3 14 2292 24m17s 1.8E3 3h46m 2.4E4 8mlls 2.3E3 lhOlm  1.6E4 DNC
Niz 3 19 3057 4h10m 2.2E4 61hO8m  6.6E4 lh7m I.5E4 | 15hIlm  1.5ES DNC
Nigs 3 24 3822 72h39m  84E4 | 111h35m  1.1ES 5h57m 3E4 timeout - DNC
Nis 3 127 6845 2mSls | timeout - 3m27s | timeout - DNC

Sherlock: A Tool for Verification of Deep Neural Networks. Dutta et.
al. AAAI Spring Symposium on Verification of Neural Networks, 2019.
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Closed-loop validation with NN controllers

Key idea: Combine neural network range estimation with reachable set computation
for dynamical systems. Dovetail between

e Estimate range of control input
* Estimate range of next state (accelerate by taking multiple steps, more approximate)
&OT Specification: Stability

| w(t)
° ' ODE x(t)
. > x=f(x,u,w) J,
| il
- ’ u(jzc) FNN |
Xin Chen, Sriram Sankaranarayanan, and Erika Abraham. u(JTC) . FN(X(JTC)) X(jTC)

FLOW?* 1.2: More Effective to Play with Hybrid System:s.

Learning and Verification of Feedback Control Systems using Feedforward Neural Networks. Souradeep Dutta, Susmit Jha,
Sriram Sankaranarayanan, Ashish Tiwari. IFAC Conference on Analysis and Design of Hybrid Systems, 2018

Sherlock - A Tool for Verification of Neural Network Feedback Systems: Demo Abstract. (Best Demo Award) . Dutta et. al.
22nd ACM International Conference on Hybrid Systems: Computation and Control (HSCC), 2019
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Closed-loop validation with NN controllers

Key idea: Combine neural network range estimation with reachable set computation
for dynamical systems. Dovetail between

e Estimate range of control input
* Estimate range of next state (accelerate by taking multiple steps, more approximate)

Specification: Stability OOT

ID NN Layer Sizes Acc Reachr Accr Invr

1 2,52,3,4,3,4,3,200,2 1 7.53s 2 2.8s

2 2,102,52,3,4,3,4,3,250,2 2 2m?25s 2 Im3s

3 3,103,53,4,5,4,5,4,600,3 2 2m33s 5 3m10s
4 3,103,53,4,5,4,5,4,300,3 1 48s 3 17.89s
5 3,103,4,5,4,5,4,300,3 5 63m6.4s 16 111m45s
6 3,303,203,4,252,3 2 16m25s 4 9m19s
7 4,104,5,6,5,6,5,600,4 3 19m42s 8 22mls

Learning and Verification of Feedback Control Systems using Feedforward Neural Networks. Souradeep Dutta, Susmit Jha,
Sriram Sankaranarayanan, Ashish Tiwari. IFAC Conference on Analysis and Design of Hybrid Systems, 2018

Sherlock - A Tool for Verification of Neural Network Feedback Systems: Demo Abstract. Dutta et. al. 22nd ACM
International Conference on Hybrid Systems: Computation and Control (HSCC), 2019
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Where do we get specifications from?

37



Extracting Safety Property from Data:

Mining Safe Driving Patterns

Safe Driving is more than adherence to traffic rules.

If we observe how ‘safe’ human drivers drive, can we

transfer these habits/patterns to an autonomous

car?

220GB of driving data: Instrumented
car (2016 Lincoln MKZ) driving along
El Camino Real (San Francisco Bay
Area). A mixture of turns and straight
driving.

timestamp,anglek,t qd,th rottle,brake

How does acceleration and
speed change during
initiation, continuation and
termination of a turn for a
safe driver?

7/16/19
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Temporal Logic

» Temporal logics specify patterns that timed behaviors of systems may or may not
satisfy.

* Linear Temporal Logic (LTL) specify property of discrete sequences of states.
* Based on logic operators (-, A, V), and

n «u

* temporal operators: “next”, “always” (G), “eventually” (F) and “until” (U)

* Extension of LTL with continuous time and real-valued signals
* Reasoning about continuous signals: steering angle of a car

LTL : G ( torque applied = F ( turn complete ) )
MTL : G (torque applied = Fjo,10 ( turn complete ) ) [real time]

STL: G (torque =20 -2 Fpo10 ( turn angle 290)) [real valued + real time]

7/16/19
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Learning Signal Temporal Logic

w:=G <$[t] > T — F[O,Tl] ( G[O,TQ] z[t] < 7T))
» Valuation 1: m <« 1.5, 11 <1358, 7+ 1.15s
» Valuation 2 (tight): 7 < .5, 71 <~ 0.65 s, 70 < 2 s

H _ | Challenge

Multiple possible values for
the same parameter.
Select tightest parameter!

ol I N

Given a set of traces, learn parameter values for the template STL formula that is consistent
with all the examples.

7/16/19 40



Learning Using Tightness Metric

Constrained Multiobjective Optimization Problem

minimize {|e1],|ez],...,|ek|} s.t.
€1 =P1 —P1,€2 =P2 — Phs .-, €k = Pk — Dy
VTETT):qb(phpQ)'“?pk)? HT/ETT/ %qb(p&?pé?’p%)




Satisfaction of STL

Qualitative

(x,t) = n
(x,8) F oA
(th) lZﬂSO

(X7 t) ': ¥ u[a,b] (0

=

=

=

~

¢ € [t + a, t + b] such that (z,t') =¥ A
vi' e [t,t], (z,t") ¢}

F(@[t], ..., zalt]) >0
_X(p(l” t)
min(x**(z, t), x** (w, 1))

max (min(x%?(z,7), min x%'(z,s
T€t+[a,b]( (@, 7) seltm] X (2,5))

7/16/19
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Learning STL

Formulato learn ¢ : Fjp o5 (x = a) from set of traces example T
Let us assume that ¢ = 2 is the tightest parameter for T

Robustness metric Absolute value of robustness metric

Find
Ip(¢,t)| a that minimizes |p(¢p(a),t)]|
p(¢,t)
Problems:
0 a 2,0 a - Non-differential close to
optimum

- Could learn false property even
when close to optimum

7/16/19 43



Learning STL with Tightness Metric

TeLEx: Passive STL Learning Using Only Positive Examples. Susmit Jha, Ashish Tiwari, Sanjit A. Seshia, Natarajan
Shankar, and Tuhin Sahai. 17th International Conference on Runtime Verification (RV), 2017

Formulato learn ¢ : Fjo 51 (x = a) from set of traces example T

Let us assume that a = 2 is the tightest parameter for T 1
- e_r
r+e BT
Practical Metric (Correctness + differentiability for optimization)
_ 5
What function 8 would have this B =1{blue] N A
characteristic ? i 10 [green] '\‘! 3
B=20[red] /- | 5
) a I — 0
0.5 N 1
-2
Tightness Metric: The tightness metric 0 : F x T x ST +— RU {—o00,00} maps an

STL formula ¢ € F, a trace T € T, and a sampled time instance t € ST to a

real value s.t.:

-0(T,7,t) =00, O(L,7,t) =—00

- 0(u, 7, t) =P(g(7(t)) — o) where p(x) := (9(x) = )

- 9(¢1 A ¢27 T, t) = min(9(¢17 T, t)? 9(¢2a T, t))

- 9(¢1 \ ¢27 T, t) = maX(0<¢la T, t)a 9(¢27 T, t))

- Q(F[t1,t2]¢77_v t) = C(77t17t2) sup 0(¢77—7 t,)
t€[t+t1,t+1o)

- 0(Gy, 1,005 T, t) = E(7, 11, 12) inf 0(p,7,t")

t'eft+t1,t+t2)

- 9(¢1U[t1,t2]¢2777 t) = E(77t17t2) sup (min(9(¢2,7', t,) " ntft/) e(d)lvTa t,/)))

i
b
' E[t+t1,t+1o] telt,

44



Learning Using Tightness Metric

Constrained Multiobjective Optimization Problem

minimize {|e1],|ez],...,|ek|} s.t.
€1 =P1 —P1,€2 =P2 — Phs .-, €k = Pk — Dy
VTETT):qb(phpQ)'“?pk)? HT/ETT/ %qb(p&?pé?’p%)

Unconstrained Scalar Optimization Problem

(v, 03,...,v}) —argmax_ [min O(¢(pr,ps, .
P1,P2,--sPk TET

7pk)77_7 O)]




Example Results

Safe Driving is more than adherence to traffic rules.

220GB of driving data: The speed of the car must be below some upper bound a € [15,25] if the
Instrumented car (2016 angle is larger than 0.2 or below -0.2. Intuitively, this property captures
Lincoln MKZ) driving along | required slowing down of the car when making a significant turn.

El Camino Real (San Template STL:  GJ[0,2.2e11](((angle > 0.2)|(angle < —0.2)) = (speed < a?15;25))
Francisco Bay Area). A Synthesized STL: G[0.0,2.2e11](((angle > 0.2)|(angle < —0.2)) = (speed < 22.01))
mixture of turns and Performance: Tightness Metric = 0.067, Robustness Metric = 0.004
straight driving. Runtime: 8.64 seconds

7/16/19
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Example Results

220GB of driving data:
Instrumented car (2016
Lincoln MKZ) driving along
El Camino Real (San
Francisco Bay Area). A
mixture of turns and
straight driving.

Safe Driving is more than adherence to traffic rules.

Another property of interest is to ensure that when the turn angle is high
(say, above 0.06), the magnitude of negative torque applied is below a thresh-
old. This avoids unsafe driving behavior of making late sharp compensation
torques to avoid wide turns.

Template STL:  G[0,2.2e11]((angle > 0.06) = (torque > b? — 2; —0.5))
Synthesized STL: G[0.0,2.2e11]((angle > 0.06) = (torque > —1.06))
Performance: Tightness Metric = 0.113, Robustness Metric = 0.003
Runtime: 7.30 seconds

7/16/19
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Impact of Smoothness of 6

12 , : : : —
— 0 gradient-based . 3500 gradient-free
8 100 | o 3000 -
S 2 2500 -
§ 80 | 8
@ 60 | ;8/ 2000 -
GE) o 1500 -
s 40 / E 1000 Ve
o T 500 -
O el ,,,_,,,7-,//"”"/ L L O | L !
0 5 10 15 20 25 0 5 10 15 20
Number of Parameters Number of Parameters

TeLEx: Passive STL Learning Using Only Positive Examples.
Susmit Jha, Ashish Tiwari, Sanjit A. Seshia, Natarajan Shankar, and Tuhin Sahai.

17th International Conference on Runtime Verification (RV), 2017
https://github.com/susmitjha/TeLEX

Bombara, Giuseppe, Cristian-loan Vasile, Francisco Penedo, Hirotoshi Yasuoka, and Calin
Belta. "A decision tree approach to data classification using signal temporal logic."

In Proceedings of the 19th International Conference on Hybrid Systems: Computation and
Control, pp. 1-10. ACM, 2016.

7/16/19

48


https://github.com/susmitjha/TeLEX

Application to Safe Autonomous Control

Proximal gradient-descent
function loss function

min £(0,0") + Ag(0’) s.t. o' = f(w,1)

Logic Head Wi41/2 = Wt — nt0¢(wy)

1
I wesr =g (5 o= wesr o+ mdg(w) )

RNN
CNN+DNN
Shared Net

| visual data | | sensorial data |

Geometric variables in the TORCS
Trusted Neural Networks for Safety-Constrained Autonomous Control.

Shalini Ghosh, Amaury Mercier, Dheeraj Pichapati, Susmit Jha, Vinod Yegneswaran, Patrick
Lincoln. SCA/ICML, May, 2018

Verma, A., Murali, V., Singh, R., Kohli, P., & Chaudhuri, S. Programmatically interpretable
reinforcement learning. ICML, 2018
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Rest of the Talk

Trust
* Global Assume/Guarantee Contracts on DNNs
e Extracting and Integrating Temporal Logic into
Learned Control —

o
7

7 4

Interpretability

* Inverse Reinforcement Learning of
Temporal Specifications

Resilience
e Adversarial Robustness
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Need for explanation

Rule-based Classifier (Example)

Interpretable but less scalable:

Decision Trees, Linear Regression Neural Networks, Support Vector
Machines
& & This route is faster.
ﬁakland e ﬁ%kland - There is traffic on Bay
San Francisco A nedacy San FranCisco AlamedaQ Bridge: - .
® J ® J There is an accident just
ﬁiﬁ Sam)Leandro ﬁ@ SanjLeandro after Bay Bridge backing
. = : .
Daly City %6fnsilergm 880 Daly,City '2_5_‘6?”6?'" - up traffic.
l. « Haywal
88an Francisco 88an Francisco )
2acifica 422 & International Airport Pacifica (35) 57 InternationalAirport
ch...\‘\ Ui Uni
. Don Ec Don Edw
fm 37 min | ] &= 37 min |
) 52,6 miles Bair Island %%VE D) 32,6 miles Bair Island %gﬁ@g
r e WAZilA A WAZilALi$

Why did we take the San Mateo bridge instead of the Bay Bridge ?

7/16/19 51



Local Explanations of Complex Models

Not reverse engineering an ML model but finding explanation locally for one decision.

decision boundary

"  square class \
X xclass L’
L ]
L
. ® n ..
L

b4
S X X %X an wiyg * % X "
n, XX>><<><>< e '\I) X X7 X % X
g ol X XX s X %x X X‘ﬁf
-. >S<><>< * ;‘{' }'l ? %x >§<X- -
. e - %~ q X P
7 - J x X % ~
( /- = I X)%(x .'. ?(xx o Wl
y » S % KX xxxa A
7/16/19
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Local Explanations of Complex Models

Not reverse engineering an ML model but finding explanation locally for one decision.

"  square class
X xclass

decision boundary

X
XXX
.\L
m
m »

X

k=g

X

X xX
X x Xy xX xX

S

-
X

square class

x class

decision boundary

Ll |
i

-'-

I‘I 'H' "

.=.I I'. L

Sufficient Cause
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Local Explanations of Complex Models

Not reverse engineering an ML model but finding explanation locally for one decision.

"  square class
X xclass
decision boundary

X
xxX
.\,(
m
m »

P =,
l-v-.
" P

square class
x class

decision boundary

= BN --l . ¥ a®
‘l-#...‘.l:'. "an ?l .

Simplified Sufficient
Cause -

7/16/19



Local Explanations in Al

Not reverse engineering an ML model but finding explanation locally for one decision.

Y e class Simplified Sufficient

x class
decision boundary

{(z) = argmin L(f,g,7=) + Q(g
ged

L(f,g,7z) Measure of how well g approximates f

(2(g) Measure of complexity of g

Formulation in Al:

* Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin.
"Why Should | Trust You?: Explaining the Predictions of
Any Classifier." International Conference on Knowledge
Discovery and Data Mining. ACM, 2016.

* Hayes, Bradley, and Julie A. Shah. "Improving Robot
Controller Transparency Through Autonomous Policy
Explanation." International Conference on Human-Robot
Interaction. ACM, 2017.
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Model Agnostic Explanation through
Boolean Learning

Maps in which optimum
path goes via green

Maps in which optimum
path does not go via green

Find a Boolean formula ¢

Let each point in k-dimensions such that

(for some k) correspond to a ¢ & Path contain z
¢ = Path contain z

Why does the path not go map.

through Green?
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Explanations as Learning Boolean Formula

Aldgurithun L A*Y

Taput srorm, goading, bl argandie]

Cutput: sall

we then retarm oieMath] starc)
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1 eELUE ke Padh Rl
1 pn e Aid
1
P

.
5
4

(pquery :
Some property of the output
Ex: Some cells not selected

Qbexplain :

Using explanation vocabulary

Ex: Obstacle presence
¢explain = ¢query
¢explain < ¢query




How difficult is it? Boolean formula learning

¢explain = ¢query
¢explain < ¢query

: X : : :
50x50 grid has 2250750 possible explanations even if
vocabulary only considers presence/absence of obstacles.

Scalability: Usually the feature space or vocabulary is large.
For a map, its order of features in the map. For an image, it is
order of the image’s resolution.

Guarantee: Is the sampled space of maps enough to generate
the explanation with some quantifiable probabilistic
guarantee?




How difficult is it? Boolean formula learning

¢explain = ¢query
¢explain < ¢query

On PAC learning algorithms for rich Boolean
function classes

Rocco A. Servedio®

Department of Computer Science
Columbia University
New York, NY U.S.A.
occo@cs.columbia.edu

X
50x50 grid has 2250750 possible explanations even if
vocabulary only considers presence/absence of obstacles.

Scalability: Usually the feature space or vocabulary is large.
For a map, its order of features in the map. For an image, it is
order of the image’s resolution.

Guarantee: Is the sampled space of maps enough to generate
the explanation with some quantifiable probabilistic
guarantee?

Theoretical Result:

Learning Boolean formula even approximately is hard. 3-
DNF is not learnable in Probably Approximately Correct
framework unless RP = NP.




Two Key ldeas

: 1. Vocabulary is large.
. . 2. How many samples (and what
| distribution) to consider for
learning explanation ?

- ER

(pexplain: d)query : . .
Using explanation vocabulary Some property of the output 3. Learning Boolean formula with
Ex: Obstacle presence Ex: Some cells not selected

PAC guarantees is hard.

Active learning Boolean formula @¢xpiqin and not learning from fixed sample.

Explanations are often short and involve only few variables !




Two Key ldeas

Active learning Boolean formula @¢xpiqin and not learning from fixed sample.

Explanations are often short and involve only few variables !




Two Key Ideas

Involves only two variables.
If we knew which two, we had

only 22° = 16
possible explanations.

How do we find these relevant
variables?

50
10 20 30 40 50 10 20 30 40 50

Active learning Boolean formula @¢xpiqin and not learning from fixed sample.

Explanations are often short and involve only few variables !




Actively Learning Boolean Formula

Oracle

1
»
®
©
Y
10 E3 ) ) E

(pquery :
Assignments to V ‘ 4 Some property of the output

m1 =(0,0,0,1,1,0,1)
m2 =(0,0,1,1,0,1,0)

Ex: Some cells not selected

(pexplain (V) : ¢

Using explanation vocabulary Evaluates assignments and returns T,F
Ex: Obstacle presence




Actively Learning Relevant Variables

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V

¢explain N sparse




Actively Learning Relevant Variables

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V

*!

¢qu Ty -
Some property of the output
Ex: Some cells not selected

T

m1l : True

Assignments to V

=(0,0,0,1,1,0,1) .




Actively Learning Relevant Variables

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V
Assignments to V

m1=(0,0,0,1,1,0,1) .
m2 = (0,0,1,1,0,1,0) .
¢qu Ty -

Some property of the output
Ex: Some cells not selected

l

m1: True, m2: False

Random Sample Till
Oracle differs




Actively Learning Relevant Variables

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V

Assignments to V
=(0,0)0j1)1}0}1
=(0,0)1j1)0}1}0
=(0,0 0{1}1}1{0 %é

iy

¢que Ty -
Some property of the output
Ex: Some cells not selected

Binary Search Over
Hamming Distance

|

m1: True, m2: False




Actively Learning Relevant Variables

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V

Assignments to V

= (0,0
= (0,0

= (0,0

Binary Search Over
Distance

0
1

Hamming D

*T

¢que Ty -
Some property of the output
Ex: Some cells not selected

n

m1: True, m2: False
m3: True




Actively Learning Relevant Variables

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V

Hamming . Dracle
Distance = 4 ASSIgnmen_tS toV
_m1={(o-olel+te | .
m2 = (0,0[1/1}0}1}0

¢ ue
nge);)roperty of the output
Ex: Some cells not selected

Hamming

Distance =2

l

-Arfrue, m2: False
m3: True

Binary Search Over
Hamming Distance




Actively Learning Relevant Variables

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V

Hamming . ]
Distance =2 /\sSignments to V
m2 =(0,0/1/1,0,1,0) * .
m3 = (0,0)0/1/L11,0) .
¢que Ty -
=(0,0)1)1,/1,11,0) 1& 23’222? 5Zﬂiyn‘2fttsh§e‘l‘t’22“t
Hamming —
Distance =1 ‘ l
m?2: False, m3: True
m4: True

Binary Search Over
Hamming Distance




Actively Learning Relevant Variables

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V

Hamming . Oracle
Distance <2 A\ssignments to V Oracle
2o -
1 ¢query
N P Some property of the output
. ‘Qﬁgé Ex: Some cells not selected
Hamming
Distance =1

|

m?2: False,-m3~—Frue

T, m4: True
Binary Search Over

Hamming Distance




Actively Learning Relevant Variables

Hamming
Distance=1

Fifth variable vs is relevant !!

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V

Assignments to V

m2 =(0,0,1,1}0}1,0) .
m4 =(0,0,1,1)1}1,0) .
¢que Ty -

Some property of the output
Ex: Some cells not selected

l

m?2: False, m4: True

Binary Search Over
Hamming Distance




Actively Learning Relevant Variables

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V
1{ fg;ee);)roperty of the output
‘Q)\)/ Ex: Some cells not selected

|

m?2: False, m4: True

Repeat to find all
relevant variables

Binary Search Over
Hamming Distance




Actively Learning Relevant Variables

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V

For each assignment

to relevant variables Random Sample Binary Search Over
Till Oracle differs Hamming Distance
2171 n(1/(L=K) (VD

Relevant variables of .xp14in found with confidence k in
2m(Ivi/(1 - 1))




Actively Learning Boolean Formula

Find U such that ¢expiain(V) = Pexpiain(U) where |U| L |V

Used distinguishing example based
approach from ICSE’10

Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. Oracle-guided Build Truth Table for
component-based program synthesis. In 2010 ACM/IEEE 32nd International Con- .
ference on Software Engineering, volume 1, pages 215-224. IEEE, 2010. the relevant variables
U
. , U
Scales to ~200 variables Worst Case: 2!Vl

@ explain found with confidence k in
02Vm(Iv|/(1 - 1))

A PAC Learning Framework




Interpretability: Observed Time Traces

120 1

100 A

0 1 2 3 |

1. Noisy 2. Large corpus and not selected examples 3. Opportunity to query

76



Interpretable Learning for Shared Intentionality

Inferring and Conveying Intentionality: Beyond Numerical Rewards to Logical Intentions. Susmit Jha and John
Rushby. AAAI Spring Symposium on Conscious Al Systems, 2019

- “7* % o

Alice Bob

Humans can undertake novel,
collective behavior, or teamwork
Capability to communicate goals,
plans and ideas to create shared
intentionality

/BN / ] Vh- v *' ‘\ A ;1‘ \ ‘ |

Consider two autonomous agents Alice and Bob with cognition capability.
Alice can invent a novel behavior — use tree logs to try and build a bridge.
How will Bob, who is watching Alice, understand Alice’s goal and assist her ?

Alice’s mental state needs to be recreated in Bob’s brain for Bob to collaborate with Alice.
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Interpretable Learning for Shared
Intentionality

Alice’s mental state needs to be recreated in Bob’s brain for Bob to collaborate with Alice.
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Shared Intentionality: Mental Cloning?

Gweon, H., Saxe, R. (2013). Developmental cognitive neuroscience of Theory of Mind. Neural
Circuit Development and Function in the Brain: Comprehensive Developmental Neuroscience.

Humans do not rely on direct replication of their neural states.

Electro-chemical representation can differ from one individual to
another depending on their personal characteristics and
experiences.

Alice’s mental state needs to be recreated in Bob’s brain for Bob to collaborate with Alice.
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Communicating Using Demonstrations:

Non-Markovian IRL

J

g s Inverse
& e ::>' Reinforcement
“":ﬁ-"/{/{/ SN \ o

Noisy Expert Learning

—

Demonstrations

Numerical Reward
Function

-  Demonstrations and rewards are often non-Markovian due to mental state of the

actor not directly modeled by environment MDP,

o Composability?, Resilience to changes in task context? Interpretability?
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Communicating Using Demonstrations:

More involved example

1. Avoid fire (red).
2. Eventually Recharge (yellow).

3. If you touch the water (blue) then
dry off (brown) before recharging
(yellow).

Explicit reduction to non-Markovean
representation suffers from the curse of
history.
a. (4 colors)*(10 time steps) = 2720
traces = 1048576
b. #specifications = 24(2/20) =
107315652

Sma

=

L

L

O

L

3

@

]

@

~="v="|

Start

O

L

L

L

]

W
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Communicating Using Demonstrations:
Temporal logic specifications

Numerical Reward Function

Trace Properties
as Task Specifications

: /
T Ve
3 /
Y /
\ /

ﬂ SDECiﬁcatiOn:,:” "\

1 1f§ € Demonstration
rel8) = 0 otherwise task P
Traces
Composable

Resilient to changes in task context

Interpretable

Can leverage formal methods tools

AuB

Traces

AcB

Traces
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Communicating Using Demonstrations:
Temporal logic specifications

Numerical Reward Function

Trace Properties
as Task Specifications

Tcp(ﬁ) = {

1 ifé&Eeyp
0 otherwise

: /
T Ve
3 /
Y /
\ /

task ©

Traces

Demonstration

signals." FORMATS, 2010.
e Jha, Susmit, Vasumathi Raman, Dorsa Sadigh, and Sanjit A. Seshia. "Safe autonomy under perception

uncertainty using chance-constrained temporal logic." Journal of Automated Reasoning 60, 2018.

AnB

AuB

AcB

Traces

Pnueli, Amir. "The temporal logic of programs." IEEE, 1977.
Donzé, Alexandre, and Oded Maler. "Robust satisfaction of temporal logic over real-valued

Traces

Traces
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Communicating Using Demonstrations:
Specification Inference Problem

Like most inverse problems, this problem is underspecified.

el
ol
SRR T
What is Pr( N Jus " Sunl Ar
| e e
N ‘ [ MRS

Specification
Intent satisfaction is Boolean. Either Alice/Bob did the task or didn't.

Assuming Alice is at least better at performing the task than a random action
policy.

Applying the principle of maximum entropy select the the distribution.
* Inspired by Maximum Entropy Principle (also used in Inverse Reinforcement

Learning)




Communicating Using Demonstrations:
KL Divergence

Bernoulli
Distribution

; SR /_ \ .
Pr( g \h ) o eDKL(B(T) ” W\))

==

S &00\,\
2
:

—— el [ el : .
Specification Satisfaction Satlgfaﬁ!;)n
Demonstrations probability probability
, given uniformly
for Alice _
. random actions
given
dynamics

Marcell Vazquez-Chanlatte, Susmit Jha , Ashish Tiwari, Mark K. Ho and Sanjit A. Seshia.
Learning Task Specifications from Demonstrations. NeurlIPS, 2018
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Communicating Using Demonstrations:
Computing posterior

Maximum a Posteriori

mgx Dkr (B(@ | B(@)

Algorithm Sketch

If one fixes the measured sat probability, the KL-divergence term in the model is

convex in the random satisfaction rate. This enables an efficient lattice based search for
the most probable specification.

- )} Ay
> -/ // l
\ — /
\ “ e
\ 3
\ -
" i

Space of Trajectories 0.0

Y
6\
iy F.\Je‘\ I
L
|
17> ¢|Dk1(B(6/8)||B(z))
N —

0.2 0.4 0.6 0.8 1.0

Marcell Vazquez-Chanlatte, Susmit Jha , Ashish Tiwari, Mark K. Ho and Sanjit A. Seshia.
_Learning Task Specifications from Demonstrations. NeurlPS, 2018
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Communicating Using Demonstrations:
More involved example

1. Avoid fire (red). ﬁ T

2. Eventually Recharge (yellow). ~

D6 @l

3. If you touch the water (blue) then Q) Q)

e

dry off (brown) before recharging /N

(yellow). | Q) Q) e Q) Q)
Totart | |

Temporal Logic Specification ‘

H: Historically YL O

O: ane x Q) Q) x

S: Since

(H-red A O yellow) A H((yéllow A O blue) = (=blue S brown))
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A Candidate Mechanism to Computationally
Implement Shared Intentionality

I Inferring and Conveying Intentionality: Beyond Numerical
Rewards to Logical Intentions. Susmit Jha and John Rushby.
AAAI Spring Symposium, Towards Conscious Al Systems, 2019

Marcell Chanlatte, Susmit Jha,
Ashish Tiwari, Mark K. Ho and San
A. Seshia. Learning Task
Specifications from
Demonstrations. NeurlPS, 2018

Jha, Susmit et al. "Safe autonomy
under perception uncertainty
using chance-constrained
temporal logic." Journal of

Find Specification as Maximum a Posteriori Automated Reasoning 60, 2018

max Dic (B(7) || 5(7))
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Interpretability / Explanation Generation
In TRINITY

* Inferring and Conveying Intentionality: Beyond Numerical Rewards to
Logical Intentions. Susmit Jha and John Rushby.
AAAI Spring Symposium, Towards Conscious Al Systems, 2019

* Learning Task Specifications from Demonstrations. Marcell Vazquez-
Chanlatte, Susmit Jha, Ashish Tiwari, Mark K. Ho and Sanjit A. Seshia.
Neural Information Processing Systems (NeurlPS), 2018

* Explaining Al Decisions Using Efficient Methods for Learning Sparse
Boolean Formulae. Susmit Jha, Tuhin Sahai, Vasumathi Raman, Alessandro
Pinto and Michael Francis.

Journal of Automated Reasoning, 2018

* On Learning Sparse Boolean Formulae For Explaining Al Decisions. Susmit
Jha, Vasumathi Raman, Alessandro Pinto, Tuhin Sahai, and Michael Francis.
NASA Formal Methods (NFM), 2017




Rest of the Talk

Trust
* Global Assume/Guarantee Contracts on DNNs
e Extracting and Integrating Temporal Logic into

Learned Control

JB
[

/,{c‘g;

y

/

7

Interpretability
* Inverse Reinforcement Learning of
Temporal Specifications

Resilience
 Adversarial Robustness
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Adversarial Examples in Deep Learning

dL(6, input; , output)
a0

0.5 1.0

Loss function L(6, input; , output) with 6 the parameters of the models.
Measures how good the prediction of the model is on a specific example.

To train a neural network we compute the derivative of L according to the weights 0
and update O in order to decrease the loss value.
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Adversarial Examples in Deep Learning

dL(6, input; , output)
dinput;

0.5 1.0

Loss function L(6, input; , output) with 6 the parameters of the models.
Measures how good the prediction of the model is on a specific example.

To train a neural network we compute the derivative of L according to the weights 0
and update O in order to decrease the loss value.

To create an adversarial sample, we compute the derivative of L according to the
input and use the result to update the pixel values in order to increase the loss

value.




Adversarial Examples in Deep Learning

dL(6, input; , output)
dinput;

0.5 1.0

Loss function L(6, input; , output) with 6 the parameters of the models.
Measures how good the prediction of the model is on a specific example.

To train a neural network we compute the derivative of L according to the weights 0
and update O in order to decrease the loss value.

dL(6, input, output)
dinput

input = input + € sign (

Fast Gradient Sign Method




Adversarial Defense by Irrelevant Factor

|dentification

Causal Modeling

Attribution-driven Causal Analysis for Detection of Adversarial Examples. Susmit Jha et.

al. SafeML/ICLR, 2019

Geometric Invariants

Detecting Adversarial Examples Using Data
Manifolds. Susmit Jha, Uyeong Jang, Somesh
Jha and Brian Jalaian. IEEE Military

Communications Conference (MILCOM), 2018

Manifold-based Robust Learning. Susmit Jha,

Uyeong Jang, Somesh Jha and Brian
Jalaian. NATO SET 262, 2018

Spectral Embedding

ISOMAP

t-SNE

LLE
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MNIST and CFAR: FGSM Attack and

Manifold Distance

Distance

0
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Attack norm bound

MNIST

Distance

16 -
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08 1
0.6
0.4
0.2 1
0.0 1

00 003 006 009 012 015 018 021 024 027 03
Attack norm bound

CFAR

Used CleverHans system for generating attacks.
Nicolas Papernot et. al.

max

Loss(z®®,1,,)
[l dv —z| |00 <€
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Manifold Distance in Input Space and
Logit Space

Distance

20 -
15 -
W
(")
[ —
IS
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05 -
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00 003 006 009 012 015 018 021 024 027 03 000 003 006 009 012 015 018 021 024 027 030
Attack norm bound Attack norm bound

Hypothesized in literature that the deeper layers of a deep neural network provide
more linear and unwrapped manifolds in comparison to the input space. Thus, the
task of identifying the manifold becomes easier as we progress from the input space
to the more abstract feature spaces all the way to the logit space.

Yoshua Bengio, Gregoire Mesnil, Yann Dauphin, and Salah Rifai. " Better mixing via deep representations. In International
Conference on Machine Learning, pages 552—-560, 2013.

Jacob R Gardner, Paul Upchurch, Matt J Kusner, Yixuan Li, Kilian Q Weinberger, Kavita Bala, and John E Hopcroft. Deep manifold
traversal: Changing labels with convolutional features. arXiv preprint arXiv:1511.06421, 2015
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Detection Rate Using Manifold Distance

MNIST CFAR
100 |
95 4 /————/
95.
— — 90 -
& g
e 851 e
c e 85 1
& S
8 75 o 801
70
75
65 -
1 2 3 4 5 6 02 04 06 08 10 12 14 16

Threshold distance Threshold distance

The kernel density estimation can be used to measure the distance d(x) of x from the
data manifold of training set. Specifically, d(x) = ﬁZ{xl_EX} k(x;,x), where X is the full

data set and k(-, -) is a kernel function such as Gaussian or a simple L or L2 norm.
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Thanks!

Questions?




